The Use of Ultrasound in Transfection and Transgene Expression

  • Claire Rome
  • Roel Deckers
  • Chrit T. W. MoonenEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 185/2)


The interaction of ultrasound with tissue leads to radiation pressure, heat generation, and cavitation. These phenomena have been utilised for local gene delivery, transfection and control of expression. Specially designed nanocarriers or adapted ultrasound contrast agents can further enhance local delivery by: (1) increased permeability of cell membranes; (2) local release of genes. Biological carriers may also be used for local gene delivery. Stem cells and immune cells appear especially promising because of their homing capabilities to lesion sites. Imaging methods can be employed for pharmacodistribution and pharmacokinetics. MRI contrast agents can serve as non-invasive reporters on gene distribution when co-delivered with the gene. They can be used to label nanocarriers and cellular transport systems in gene therapy strategies such as those based on stem cells. Finally, ultrasound heating together with the use of a temperature sensitive promoter allows a local, physical, spatio-temporal control of transgene expression, in particular when combined with MRI temperature mapping for monitoring and even controlling ultrasound heating.


Radiation Force Ultrasound Contrast Agent Ultrasound Exposure Gene Therapy Strategy IEEE Trans Ultrason Ferroelectr Freq 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amabile PG, Waugh JM, Lewis TN, Elkins CJ, Janas W, Dake MD (2001) High-efficiency endovascular gene delivery via therapeutic ultrasound. J Am Coll Cardiol 37(7):1975–1980PubMedCrossRefGoogle Scholar
  2. Amini AN, Ebbini ES, Georgiou TT (2005) Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques. IEEE Trans Biomed Eng 52(2):221–228PubMedCrossRefGoogle Scholar
  3. Arai Y, Kubo T, Kobayashi K, Ikeda T, Takahashi K, Takigawa M, Imanishi J, Hirasawa Y (1999) Control of delivered gene expression in chondrocytes using heat shock protein 70B promoter. J Rheumatol 26(8):1769–1774PubMedGoogle Scholar
  4. Baek S, March KL (1998) Gene therapy for restenosis: getting nearer the heart of the matter. Circ Res 82(3):295–305PubMedGoogle Scholar
  5. Bao S, Thrall BD, Miller DL (1997) Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 23(6):953–959PubMedCrossRefGoogle Scholar
  6. Bao S, Thrall BD, Gies RA, Miller DL (1998) In vivo transfection of melanoma cells by lithotripter shock waves. Cancer Res 58(2):219–221PubMedGoogle Scholar
  7. Bekeredjian R, Grayburn PA, Shohet RV (2005) Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 45(3):329–335PubMedCrossRefGoogle Scholar
  8. Blackburn RV, Galoforo SS, Corry PM, Lee YJ (1998) Adenoviral-mediated transfer of a heat-inducible double suicide gene into prostate carcinoma cells. Cancer Res 58(7):1358–1362PubMedGoogle Scholar
  9. Blake JR, Gibson DC (1987) Cavitation bubbles near boundaries. Ann Rev Fluid Mech 19:99–123CrossRefGoogle Scholar
  10. Bos C, Lepetit-Coiffe M, Quesson B, Moonen CT (2005) Simultaneous monitoring of temperature and T1: methods and preliminary results of application to drug delivery using thermosensitive liposomes. Magn Reson Med 54(4):1020–1024PubMedCrossRefGoogle Scholar
  11. Braiden V, Ohtsuru A, Kawashita Y, Miki F, Sawada T, Ito M, Cao Y, Kaneda Y, Koji T, Yamashita S (2000) Eradication of breast cancer xenografts by hyperthermic suicide gene therapy under the control of the heat shock protein promoter. Hum Gene Ther 11(18):2453–2463PubMedCrossRefGoogle Scholar
  12. Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, New YorkGoogle Scholar
  13. Bulte JW, Arbab AS, Douglas T, Frank JA (2004) Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods Enzymol 386:275–299PubMedCrossRefGoogle Scholar
  14. Cao YA, Wagers AJ, Beilhack A, Dusich J, Bachmann MH, Negrin RS, Weissman IL, Contag CH (2004) Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci U S A 101(1):221–226PubMedCrossRefGoogle Scholar
  15. Chen S, Ding JH, Bekeredjian R, Yang BZ, Shohet RV, Johnston SA, Hohmeier HE, Newgard CB, Grayburn PA (2006) Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci U S A 103(22):8469–8474PubMedCrossRefGoogle Scholar
  16. Dalecki D, Child SZ, Raeman CH, Cox C, Carstensen EL (1997a) Ultrasonically induced lung hemorrhage in young swine. Ultrasound Med Biol 23(5):777–781PubMedCrossRefGoogle Scholar
  17. Dalecki D, Raeman CH, Child SZ, Cox C, Francis CW, Meltzer RS, Carstensen EL (1997b) Hemolysis in vivo from exposure to pulsed ultrasound. Ultrasound Med Biol 23(2):307–313PubMedCrossRefGoogle Scholar
  18. de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23(11):1407–1413PubMedCrossRefGoogle Scholar
  19. Dreano M, Brochot J, Myers A, Cheng-Meyer C, Rungger D, Voellmy R, Bromley P (1986) High-level, heat-regulated synthesis of proteins in eukaryotic cells. Gene 49(1):1–8PubMedCrossRefGoogle Scholar
  20. Dunn F, D. O’Brien W (eds) (1976) Ultrasonic Biophysics. Hutchinson and Ross, DowdenGoogle Scholar
  21. Evans EA, Waugh R, Melnik L (1976) Elastic area compressibility modulus of red cell membrane. Biophys J 16(6):585–595PubMedCrossRefGoogle Scholar
  22. Everbach EC, Makin IR, Azadniv M, Meltzer RS (1997) Correlation of ultrasound-induced hemolysis with cavitation detector output in vitro. Ultrasound Med Biol 23(4):619–624PubMedCrossRefGoogle Scholar
  23. Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG (1987) Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci U S A 84(23):8463–8467PubMedCrossRefGoogle Scholar
  24. Fossheim SL, Il’yasov KA, Hennig J, Bjornerud A (2000) Thermosensitive paramagnetic liposomes for temperature control during MR imaging-guided hyperthermia: in vitro feasibility studies. Acad Radiol 7(12):1107–1115PubMedCrossRefGoogle Scholar
  25. Frenkel PA, Chen S, Thai T, Shohet RV, Grayburn PA (2002) DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med Biol 28(6):817–822PubMedCrossRefGoogle Scholar
  26. Frenkel V, Li KC. Potential role of pulsed-high intensity focused ultrasound in gene therapy. Future Oncol 2006;2(1):111–119PubMedCrossRefGoogle Scholar
  27. Frenkel V, Deng C, O’Neill BE et al (2005) Pulsed-high intensity focused ultrasound (HIFU) exposures for enhanced delivery of therapeutics: mechanisms and applications. The 5th International Symposium on Therapeutic Ultrasound, October 27–29, BostonGoogle Scholar
  28. Frenkel V, Etherington A, Greene M, Quijano J, Xie J, Hunter F, Dromi S, Li KC (2006) Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol 13(4):469–479PubMedCrossRefGoogle Scholar
  29. Gao ZG, Fain HD, Rapoport N (2005) Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release 102(1):203–222PubMedCrossRefGoogle Scholar
  30. Grayburn PA (2002) Current and future contrast agents. Echocardiography 19(3):259–265PubMedCrossRefGoogle Scholar
  31. Greenleaf WJ, Bolander ME, Sarkar G, Goldring MB, Greenleaf JF (1998) Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med Biol 24(4):587–595PubMedCrossRefGoogle Scholar
  32. Guilhon E, Quesson B, Moraud-Gaudry F, de Verneuil H, Canioni P, Salomir R, Voisin P, Moonen CT (2003a) Image-guided control of transgene expression based on local hyperthermia. Mol Imaging 2(1):11–17PubMedCrossRefGoogle Scholar
  33. Guilhon E, Voisin P, de Zwart JA, Quesson B, Salomir R, Maurange C, Bouchaud V, Smirnov P, de Verneuil H, Vekris A, Canioni P, Moonen CT (2003b) Spatial and temporal control of transgene expression in vivo using a heat-sensitive promoter and MRI-guided focused ultrasound. J Gene Med 5(4):333–342PubMedCrossRefGoogle Scholar
  34. Hauger O, Frost EE, van Heeswijk R, Deminiere C, Xue R, Delmas Y, Combe C, Moonen CT, Grenier N, Bulte JW (2006) MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 238(1):200–210PubMedCrossRefGoogle Scholar
  35. Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, Focking M, Arnold H, Hescheler J, Fleischmann BK, Schwindt W, Buhrle C (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A 99(25):16267–16272PubMedCrossRefGoogle Scholar
  36. Hou CC, Wang W, Huang XR, Fu P, Chen TH, Sheikh-Hamad D, Lan HY (2005) Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. Am J Pathol 166(3):761–771PubMedGoogle Scholar
  37. Huang Q, Hu JK, Lohr F, Zhang L, Braun R, Lanzen J, Little JB, Dewhirst MW, Li CY (2000) Heat-induced gene expression as a novel targeted cancer gene therapy strategy. Cancer Res 60(13):3435–3439PubMedGoogle Scholar
  38. Huber PE, Pfisterer P (2000) In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther 7(17):1516–1525PubMedCrossRefGoogle Scholar
  39. Hueter TF, Bolt RH (1955) Sonics. Wiley, New YorkGoogle Scholar
  40. Husseini GA, Myrup GD, Pitt WG, Christensen DA, Rapoport NY (2000) Factors affecting acoustically triggered release of drugs from polymeric micelles. J Control Release 69(1):43–52PubMedCrossRefGoogle Scholar
  41. Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME (1996) Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther 7(11):1339–1346PubMedCrossRefGoogle Scholar
  42. Lawrie A, Brisken AF, Francis SE, Tayler DI, Chamberlain J, Crossman DC, Cumberland DC, Newman CM (1999) Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation 99(20):2617–2620PubMedGoogle Scholar
  43. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM (2000) Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 7(23):2023–2027PubMedCrossRefGoogle Scholar
  44. Lawrie A, Brisken AF, Francis SE, Wyllie D, Kiss-Toth E, Qwarnstrom EE, Dower SK, Crossman DC, Newman CM (2003) Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals. Ultrasound Med Biol 29(10): 1453–1461PubMedCrossRefGoogle Scholar
  45. Lee JM, Takahashi M, Mon H, Koga K, Kawaguchi Y, Kusakabe T (2005) Efficient gene transfer into silkworm larval tissues by a combination of sonoporation and lipofection. Cell Biol Int 29(11):976–979PubMedCrossRefGoogle Scholar
  46. Lee YH, Peng CA (2005) Enhanced retroviral gene delivery in ultrasonic standing wave fields. Gene Ther 12(7):625–633PubMedCrossRefGoogle Scholar
  47. Leighton TG (1994) The acoustic bubble. Academic Press, LondonGoogle Scholar
  48. Letavernier B, Salomir R, Delmas Y, Rome C, Couillaud F, Desmoulière A, Dubus I, Moreau-Gaudry F, Grosset C, Hauger O, Rosenbaum J, Grenier N, Combe C, Ripoche J, Moonen CT (2008) Ultrasound induced expression of a heat shock promoter-driven transgene delivered in the kidney by genetically modified mesenchymal stem cells. A feasibility study. In: Hynynen K, Jolesz F (eds) Taylor & Francis (in press)Google Scholar
  49. Liu J, Lewis TN, Prausnitz MR (1998) Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm Res 15(6):918–924PubMedCrossRefGoogle Scholar
  50. Lokhandwalla M, McAteer JA, Williams JC, Sturtevant B (2001) Mechanical hemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear. Phys Med Biol 46:1245–1264PubMedCrossRefGoogle Scholar
  51. Lu QL, Liang HD, Partridge T, Blomley MJ (2003) Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 10(5):396–405PubMedCrossRefGoogle Scholar
  52. Lum AF, Borden MA, Dayton PA, Kruse DE, Simon SI, Ferrara KW (2006) Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111(1–2):128–134PubMedCrossRefGoogle Scholar
  53. Madio DP, van Gelderen P, DesPres D, Olson AW, de Zwart JA, Fawcett TW, Holbrook NJ, Mandel M, Moonen CT (1998) On the feasibility of MRI-guided focused ultrasound for local induction of gene expression. J Magn Reson Imaging 8(1):101–104PubMedCrossRefGoogle Scholar
  54. Manome Y, Nakamura M, Ohno T, Furuhata H (2000) Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo. Hum Gene Ther 11(11): 1521–1528PubMedCrossRefGoogle Scholar
  55. Marmottant P, Hilgenfeldt S (2003) Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423(6936):153–156PubMedCrossRefGoogle Scholar
  56. May DJ, Allen JS, Ferrara KW (2002) Dynamics and fragmentation of thick-shelled microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control 49(10):1400–1410PubMedCrossRefGoogle Scholar
  57. Miller DL, Song J (2002) Lithotripter shock waves with cavitation nucleation agents produce tumor growth reduction and gene transfer in vivo. Ultrasound Med Biol 28(10):1343–1348PubMedCrossRefGoogle Scholar
  58. Miller MW, Miller DL, Brayman AA (1996) A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 22(9):1131–1154PubMedCrossRefGoogle Scholar
  59. Mukherjee D, Wong J, Griffin B, Ellis SG, Porter T, Sen S, Thomas JD (2000) Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J Am Coll Cardiol 35(6):1678–1686PubMedCrossRefGoogle Scholar
  60. Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A (2003) Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 14(6):591–597PubMedCrossRefGoogle Scholar
  61. Newman CM, Lawrie A, Brisken AF, Cumberland DC (2001) Ultrasound gene therapy: on the road from concept to reality. Echocardiography 18(4):339–347PubMedCrossRefGoogle Scholar
  62. Newman KD, Dunn PF, Owens JW, Schulick AH, Virmani R, Sukhova G, Libby P, Dichek DA (1995) Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. J Clin Invest 96(6):2955–2965PubMedCrossRefGoogle Scholar
  63. Ng YY, Hou CC, Wang W, Huang XR, Lan HY (2005) Blockade of NFkappaB activation and renal inflammation by ultrasound-mediated gene transfer of Smad7 in rat remnant kidney. Kidney Int Suppl (94):S83–S91PubMedCrossRefGoogle Scholar
  64. Nishida K, Doita M, Takada T, Kakutani K, Miyamoto H, Shimomura T, Maeno K, Kurosaka M (2006) Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine 31(13):1415–1419PubMedCrossRefGoogle Scholar
  65. Nyborg WL (1996) Basic physics of low frequency therapeutic ultrasound. Kluwer, BostonGoogle Scholar
  66. Pernot M, Tanter M, Bercoff J, Waters KR, Fink M (2004) Temperature estimation using ultrasonic spatial compound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 51(5):606–615PubMedCrossRefGoogle Scholar
  67. Pislaru SV, Pislaru C, Kinnick RR, Singh R, Gulati R, Greenleaf JF, Simari RD (2003) Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and ultrasound modalities. Eur Heart J 24(18):1690–1698PubMedCrossRefGoogle Scholar
  68. Plathow C, Lohr F, Divkovic G, Rademaker G, Farhan N, Peschke P, Zuna I, Debus J, Claussen CD, Kauczor HU, Li CY, Jenne J, Huber P (2005) Focal gene induction in the liver of rats by a heat-inducible promoter using focused ultrasound hyperthermia: preliminary results. Invest Radiol 40(11):729–735PubMedCrossRefGoogle Scholar
  69. Porter TR, Xie F. Therapeutic ultrasound for gene delivery. Echocardiography18(4):349–353Google Scholar
  70. Rome C, Couillaud F, Moonen CT (2005) Spatial and temporal control of expression of therapeutic genes using heat shock protein promoters. Methods 35(2):188–198PubMedCrossRefGoogle Scholar
  71. Rooney JA (1970) Hemolysis near an ultrasonically pulsating gas bubble. Science 169(948): 869–871PubMedCrossRefGoogle Scholar
  72. Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, Abolmaali ND, Vogl TJ, Hofmann WK, Martin H, Dimmeler S, Zeiher AM (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 44(8):1690–1699PubMedCrossRefGoogle Scholar
  73. Schratzberger P, Krainin JG, Schratzberger G, Silver M, Ma H, Kearney M, Zuk RF, Brisken AF, Losordo DW, Isner JM (2002) Transcutaneous ultrasound augments naked DNA transfection of skeletal muscle. Mol Ther 6(5):576–583PubMedCrossRefGoogle Scholar
  74. Shohet RV, Chen S, Zhou YT, Wang Z, Meidell RS, Unger RH, Grayburn PA (2000) Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 101(22):2554–2556PubMedGoogle Scholar
  75. Shortencarier MJ, Dayton PA, Bloch SH, Schumann PA, Matsunaga TO, Ferrara KW (2004) A method for radiation-force localized drug delivery using gas-filled lipospheres. IEEE Trans Ultrason Ferroelectr Freq Control 51(7):822–831PubMedCrossRefGoogle Scholar
  76. Silcox CE, Smith RC, King R, McDannold N, Bromley P, Walsh K, Hynynen K (2005) MRI-guided ultrasonic heating allows spatial control of exogenous luciferase in canine prostate. Ultrasound Med Biol 31(7):965–970PubMedCrossRefGoogle Scholar
  77. Smith RC, Machluf M, Bromley P, Atala A, Walsh K (2002) Spatial and temporal control of transgene expression through ultrasound-mediated induction of the heat shock protein 70B promoter in vivo. Hum Gene Ther 13(6):697–706PubMedCrossRefGoogle Scholar
  78. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918PubMedCrossRefGoogle Scholar
  79. Suslick KS (1989) Ultrasound: its chemical, physical and biological effects. VCH, LondonGoogle Scholar
  80. Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K, Nakamura T, Ogihara T, Kaneda Y, Morishita R (2002) Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 9(6):372–380PubMedCrossRefGoogle Scholar
  81. Tata DB, Dunn F, Tindall DJ (1997) Selective clinical ultrasound signals mediate differential gene transfer and expression in two human prostate cancer cell lines: LnCap and PC-3. Biochem Biophys Res Commun 234(1):64–67PubMedCrossRefGoogle Scholar
  82. Teupe C, Richter S, Fisslthaler B, Randriamboavonjy V, Ihling C, Fleming I, Busse R, Zeiher AM, Dimmeler S (2002) Vascular gene transfer of phosphomimetic endothelial nitric oxide synthase (S1177D) using ultrasound-enhanced destruction of plasmid-loaded microbubbles improves vasoreactivity. Circulation 105(9):1104–1109PubMedCrossRefGoogle Scholar
  83. Unger EC, McCreery TP, Sweitzer RH (1997) Ultrasound enhances gene expression of liposomal transfection. Invest Radiol 32(12):723–727PubMedCrossRefGoogle Scholar
  84. Unger EC, Matsunaga TO, McCreery T, Schumann P, Sweitzer R, Quigley R (2002) Therapeutic applications of microbubbles. Eur J Radiol 42(2):160–168PubMedCrossRefGoogle Scholar
  85. Weinstein JN, Magin RL, Yatvin MB, Zaharko DS (1979) Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Science 204(4389):188–191PubMedCrossRefGoogle Scholar
  86. Xu L, Zhao Y, Zhang Q, Li Y, Xu Y (2004) Regulation of transgene expression in muscles by ultrasound-mediated hyperthermia. Gene Ther 11(11):894–900PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Claire Rome
    • 1
  • Roel Deckers
    • 1
  • Chrit T. W. Moonen
    • 1
    Email author
  1. 1.Laboratory for Molecular and Functional Imaging: From Physiology to TherapyUMR5231 CNRS, Université Victor Segalen Bordeaux 2BordeauxFrance

Personalised recommendations