Phage Peptide Display

  • Jessica Newton
  • Susan L. DeutscherEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 185/2)


Molecular imaging is at the forefront in the advancement of in-vivo diagnosis and monitoring of cancer. New peptide-based molecular probes to facilitate cancer detection are rapidly evolving. Peptide-based molecular probes that target apoptosis, angiogenesis, cell signaling and cell adhesion events are in place. Bacteriophage (phage) display technology, a molecular genetic approach to ligand discovery, is commonly employed to identify peptides as tumor-targeting molecules. The peptide itself may perhaps have functional properties that diminish tumor growth or metastasis. More often, a selected peptide is chemically synthesized, coupled to a radiotracer or fluorescent probe, and utilized in the development of new noninvasive molecular imaging probes. A myriad of peptides that bind cancer cells and cancer-associated antigens have been reported from phage library selections. Phage selections have also been performed in live animals to obtain peptides with optimal stability and targeting properties in vivo. To this point, few in-vitro, in-situ, or in-vivo selected peptides have shown success in the molecular imaging of cancer, the notable exception being vascular targeting peptides identified via in-vivo selections. The success of vasculature targeting peptides, such as those with an RGD motif that bind αvβ3integrin, may be due to the abundance and expression patterns of integrins in tumors and supporting vasculature. The discovery of molecular probes that bind tumor-specific antigens has lagged considerably. One promising means to expedite discovery is through the implementation of selected phage themselves as tumor-imaging agents in animals.


Phage Display Phage Clone Phage Display Library Phage Display Peptide Library Phage Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aina OH, Sroka TC, Chen ML, Lam KS (2002) Therapeutic cancer targeting peptides. Biopolymers 66:184–199PubMedGoogle Scholar
  2. Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380PubMedGoogle Scholar
  3. Arap W, Haedicke W, Bernasconi M, Kain R, Rajotte D, Krajewski S, Ellerby HM, Bredesen DE, Pasqualini R, Ruoslahti E (2002a) Targeting the prostate for destruction through a vascular address. ProcNatl Acad Sci USA 99:1527–1531Google Scholar
  4. Arap W, Kolonin M, Trepel M, Lahdenranta J, Cardo-Vila M, Giordano RJ, Mintz PJ, Ardelt PU, Yao VJ, Vidal CI, Chen L, Flamm A, Valtanen H, Weavind LM, Hicks ME, Pollock RE, Botz GH, Bucana CD, Koivunen E, Cahill D, Troncoso P, Baggerly KA, Pentz RD, Do KA, Logothetis CJ, Pasqualini R (2002b) Steps toward mapping the human vasculature by phage display. Nat Med 8:121–127PubMedGoogle Scholar
  5. Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis AS, Arap W, Pasqualini R (2004) Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6:275–284PubMedGoogle Scholar
  6. Askoxylakis V, Zitzmann S, Mier W, Graham K, Kramer S, von Wegner F, Fink RH, Schwab M, Eisenhut M, Haberkorn U (2005) Preclinical evaluation of the breast cancer cell-binding peptide, p160. Clin Cancer Res 11:6705–6712PubMedGoogle Scholar
  7. Askoxylakis V, Mier W, Zitzmann S, Ehemann V, Zhang J, Kramer S, Beck C, Schwab M, Eisenhut M, Haberkorn U (2006) Characterization and development of a peptide (p160) with affinity for neuroblastoma cells. J Nucl Med 47:981–988PubMedGoogle Scholar
  8. Atwell S, Wells JA (1999) Selection for improved subtiligases by phage display. Proc Natl Acad Sci USA 96:9497–9502PubMedGoogle Scholar
  9. Bakker WH, Krenning EP, Reubi JC, Breeman WA, Setyono-Han B, de Jong M, Kooij PP, Bruns C, van Hagen PM, Marbach P et al (1991) In vivo application of [111In-DTPA-D-Phe1]-octreotide for detection of somatostatin receptor-positive tumors in rats. Life Sci 49:1593–1601PubMedGoogle Scholar
  10. Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA 88:7978–7982PubMedGoogle Scholar
  11. Behr TM, Gotthardt M, Barth A, Behe M (2001) Imaging tumors with peptide-based radioligands. Q J Nucl Med 45:189–200PubMedGoogle Scholar
  12. Binetruy-Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, Kraemer M, Plouet J, Derbin C, Perret G, Mazie JC (2000) Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 19:1525–1533PubMedGoogle Scholar
  13. Bockmann M, Drosten M, Putzer BM (2005) Discovery of targeting peptides for selective therapy of medullary thyroid carcinoma. J Gene Med 7:179–188PubMedGoogle Scholar
  14. Brown KC (2000) New approaches for cell-specific targeting: identification of cell-selective peptides from combinatorial libraries. Curr Opin Chem Biol 4:16–21PubMedGoogle Scholar
  15. Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676PubMedGoogle Scholar
  16. Chen J, Cheng Z, Hoffman TJ, Jurisson SS, Quinn TP (2000) Melanoma-targeting properties of (99m)technetium-labeled cyclic alpha-melanocyte-stimulating hormone peptide analogues. Cancer Res 60:5649–5658PubMedGoogle Scholar
  17. Chen J, Tung CH, Allport JR, Chen S, Weissleder R, Huang PL (2005a) Near-infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction. Circulation 111:1800–1805PubMedGoogle Scholar
  18. Chen L, Zurita AJ, Ardelt PU, Giordano RJ, Arap W, Pasqualini R (2004) Design and validation of a bifunctional ligand display system for receptor targeting. Chem Biol 11:1081–1091PubMedGoogle Scholar
  19. Chen X, Sievers E, Hou Y, Park R, Tohme M, Bart R, Bremner R, Bading JR, Conti PS (2005b) Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia 7:271–9PubMedGoogle Scholar
  20. Cheng Z, Wu Y, Xiong Z, Gambhir SS, Chen X (2005) Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice. Bioconjug Chem 16:1433–1441PubMedGoogle Scholar
  21. Crameri R, Kodzius R (2001) The powerful combination of phage surface display of cDNA libraries and high throughput screening. Comb Chem High Throughput Screen 4:145–155PubMedGoogle Scholar
  22. Ding H, Prodinger WM, Kopecek J (2006) Identification of CD21-binding peptides with phage display and investigation of binding properties of HPMA copolymer-peptide conjugates. Bioconjug Chem 17:514–523PubMedGoogle Scholar
  23. Du B, Qian M, Zhou Z, Wang P, Wang L, Zhang X, Wu M, Zhang P, Mei B (2006) In vitro panning of a targeting peptide to hepatocarcinoma from a phage display peptide library. Biochem Biophys Res Commun 342:956–962PubMedGoogle Scholar
  24. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci USA 103:4841–4845PubMedGoogle Scholar
  25. Fan H, Duan Y, Zhou H, Li W, Li F, Guo L, Roeske RW (2002) Selection of peptide ligands binding to fibroblast growth factor receptor 1. IUBMB Life 54:67–72PubMedGoogle Scholar
  26. Fleming TJ, Sachdeva M, Delic M, Beltzer J, Wescott CR, Devlin M, Lander RC, Nixon AE, Roschke V, Hilbert DM, Sexton DJ (2005) Discovery of high-affinity peptide binders to BLyS by phage display. J Mol Recognit 18:94–102PubMedGoogle Scholar
  27. Fong S, Doyle MV, Goodson RJ, Drummond RJ, Stratton JR, McGuire L, Doyle LV, Chapman HA, Rosenberg S (2002) Random peptide bacteriophage display as a probe for urokinase receptor ligands. Biol Chem 383:149–158PubMedGoogle Scholar
  28. Fukuda MN, Ohyama C, Lowitz K, Matsuo O, Pasqualini R, Ruoslahti E, Fukuda M (2000) A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res 60:450–456PubMedGoogle Scholar
  29. Funovics M, Montet X, Reynolds F, Weissleder R, Josephson L (2005) Nanoparticles for the optical imaging of tumor E-selectin. Neoplasia 7:904–911PubMedGoogle Scholar
  30. Giordano RJ, Cardo-Vila M, Lahdenranta J, Pasqualini R, Arap W (2001) Biopanning and rapid analysis of selective interactive ligands. Nat Med 7:1249–1253PubMedGoogle Scholar
  31. Glinsky VV, Huflejt ME, Glinsky GV, Deutscher SL, Quinn TP (2000) Effects of Thomsen-Friedenreich antigen-specific peptide P-30 on beta-galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells. Cancer Res 60:2584–2588PubMedGoogle Scholar
  32. Glinsky VV, Glinsky GV, Rittenhouse-Olson K, Huflejt ME, Glinskii OV, Deutscher SL, Quinn TP (2001) The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 61:4851–4857PubMedGoogle Scholar
  33. Goldenberg DM (2002) Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med 43:693–713PubMedGoogle Scholar
  34. Goldenberg MM (1999) Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 21:309–318PubMedGoogle Scholar
  35. Goodson RJ, Doyle MV, Kaufman SE, Rosenberg S (1994) High-affinity urokinase receptor antagonists identified with bacteriophage peptide display. Proc Natl Acad Sci US A 91:7129–7133Google Scholar
  36. Hajitou A, Trepel M, Lilley CE, Soghomonyan S, Alauddin MM, Marini FC, 3rd, Restel BH, Ozawa MG, Moya CA, Rangel R, Sun Y, Zaoui K, Schmidt M, von Kalle C, Weitzman MD, Gelovani JG, Pasqualini R, Arap W (2006) A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 125:385–398PubMedGoogle Scholar
  37. Haubner R, Wester HJ (2004) Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 10:1439–1455PubMedGoogle Scholar
  38. Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, Kessler H, Schwaiger M (2001) Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336PubMedGoogle Scholar
  39. Heppeler A, Froidevaux S, Eberle AN, Maecke HR (2000) Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 7:971–994PubMedGoogle Scholar
  40. Hetian L, Ping A, Shumei S, Xiaoying L, Luowen H, Jian W, Lin M, Meisheng L, Junshan Y, Chengchao S (2002) A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor. J Biol Chem 277:43137-43142PubMedGoogle Scholar
  41. Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354:84–86PubMedGoogle Scholar
  42. Houimel M, Schneider P, Terskikh A, Mach JP (2001) Selection of peptides and synthesis of pentameric peptabody molecules reacting specifically with ErbB-2 receptor. Int J Cancer 92: 748–755PubMedGoogle Scholar
  43. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, Rajopadhye M, Boonstra H, Corstens FH, Boerman OC (2002) Tumor targeting with radiolabeled alpha(v) beta(3) integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151PubMedGoogle Scholar
  44. Jaye DL, Nolte FS, Mazzucchelli L, Geigerman C, Akyildiz A, Parkos CA (2003) Use of real-time polymerase chain reaction to identify cell- and tissue-type-selective peptides by phage display. Am J Pathol 162:1419–1429PubMedGoogle Scholar
  45. Jaye DL, Geigerman CM, Fuller RE, Akyildiz A, Parkos CA (2004) Direct fluorochrome labeling of phage display library clones for studying binding specificities: applications in flow cytometry and fluorescence microscopy. J Immunol Methods 295:119–127PubMedGoogle Scholar
  46. Karasseva N, Glinsky VV, Chen NX, Komatireddy R, Quinn TP (2002) Identification and characterization of peptides that bind human ErbB-2 selected from a bacteriophage display library. J Protein Chem 21:287–296PubMedGoogle Scholar
  47. Ke SH, Coombs GS, Tachias K, Corey DR, Madison EL (1997) Optimal subsite occupancy and design of a selective inhibitor of urokinase. J Biol Chem 272:20456–20462PubMedGoogle Scholar
  48. Kelly KA, Jones DA (2003) Isolation of a colon tumor specific binding peptide using phage display selection. Neoplasia 5:437–444PubMedGoogle Scholar
  49. Kelly K, Alencar H, Funovics M, Mahmood U, Weissleder R (2004) Detection of invasive colon cancer using a novel, targeted, library-derived fluorescent peptide. Cancer Res 64:6247–6251PubMedGoogle Scholar
  50. Kelly KA, Clemons PA, Yu AM, Weissleder R (2006a) High-throughput identification of phage-derived imaging agents. Mol Imaging 5:24–30PubMedGoogle Scholar
  51. Kelly KA, Nahrendorf M, Yu AM, Reynolds F, Weissleder R (2006b) In vivo phage display selection yields atherosclerotic plaque targeted peptides for imaging. Mol Imaging Biol 8:201–207PubMedGoogle Scholar
  52. Kennel SJ, Mirzadeh S, Hurst GB, Foote LJ, Lankford TK, Glowienka KA, Chappell LL, Kelso JR, Davern SM, Safavy A, Brechbiel MW (2000) Labeling and distribution of linear peptides identified using in vivo phage display selection for tumors. Nucl Med Biol 27:815–825PubMedGoogle Scholar
  53. Kim JW, Wang XW (2003) Gene expression profiling of preneoplastic liver disease and liver cancer: a new era for improved early detection and treatment of these deadly diseases? Carcinogenesis 24:363–369PubMedGoogle Scholar
  54. Kim Y, Lillo AM, Steiniger SC, Liu Y, Ballatore C, Anichini A, Mortarini R, Kaufmann GF, Zhou B, Felding-Habermann B, Janda KD (2006) Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry 45:9434–9444PubMedGoogle Scholar
  55. Koivunen E, Arap W, Rajotte D, Lahdenranta J, Pasqualini R (1999) Identification of receptor ligands with phage display peptide libraries. J Nucl Medi 40:883–888Google Scholar
  56. Kolonin M, Pasqualini R, Arap W (2001) Molecular addresses in blood vessels as targets for therapy. Curr Opin Chem Biol 5:308–313PubMedGoogle Scholar
  57. Kolonin MG, Bover L, Sun J, Zurita AJ, Do KA, Lahdenranta J, Cardo-Vila M, Giordano RJ, Jaalouk DE, Ozawa MG, Moya CA, Souza GR, Staquicini FI, Kunyiasu A, Scudiero DA, Holbeck SL, Sausville EA, Arap W, Pasqualini R (2006) Ligand-directed surface profiling of human cancer cells with combinatorial peptide libraries. Cancer Res 66:34–40PubMedGoogle Scholar
  58. Koolpe M, Dail M, Pasquale EB (2002) An ephrin mimetic peptide that selectively targets the EphA2 receptor. J Biol Chem 277:46974–46979PubMedGoogle Scholar
  59. Koolpe M, Burgess R, Dail M, Pasquale EB (2005) EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J Biol Chem 280: 17301–17311PubMedGoogle Scholar
  60. Kridel SJ, Chen E, Kotra LP, Howard EW, Mobashery S, Smith JW (2001) Substrate hydrolysis by matrix metalloproteinase-9. J Biol Chem 276:20572–20578PubMedGoogle Scholar
  61. Kuhnast B, Bodenstein C, Haubner R, Wester HJ, Senekowitsch-Schmidtke R, Schwaiger M, Weber WA (2004) Targeting of gelatinase activity with a radiolabeled cyclic HWGF peptide. Nucl Med Biol 31:337–344PubMedGoogle Scholar
  62. Kumada Y, Nogami M, Minami N, Maehara M, Katoh S (2005) Application of protein-coupled liposomes to effective affinity screening from phage library. J Chromatogr A 1080:22–28PubMedGoogle Scholar
  63. Kumar S, Quinn T, Deutscher S (2007) Evaluation of an 111In-radiolabeled peptide as a targeting and imaging agent for ErbB-2 receptor expressing breast carcinomas. Clin Cancer Res 13:6070–6079PubMedGoogle Scholar
  64. Kwon S, Ke S, Houston JP, Wang W, Wu Q, Li C, Sevick-Muraca EM (2005) Imaging dose-dependent pharmacokinetics of an RGD-fluorescent dye conjugate targeted to alpha v beta 3 receptor expressed in Kaposi’s sarcoma. Mol Imaging 4:75–87PubMedGoogle Scholar
  65. Landon LA, Harden W, Illy C, Deutscher SL (2004a) High-throughput fluorescence spectroscopic analysis of affinity of peptides displayed on bacteriophage. Anal Biochem 331:60–67PubMedGoogle Scholar
  66. Landon LA, Zou J, Deutscher SL (2004b) Is phage display on target for developing peptide-based cancer drugs? Curr Drug Discov Technol 1:113–132PubMedGoogle Scholar
  67. Liang S, Lin T, Ding J, Pan Y, Dang D, Guo C, Zhi M, Zhao P, Sun L, Hong L, Shi Y, Yao L, Liu J, Wu K, Fan D (2006) Screening and identification of vascular-endothelial-cell-specific binding peptide in gastric cancer. J Mol Med 84:764–773PubMedGoogle Scholar
  68. Marik J, Lam KS (2005) Peptide and small-molecule microarrays. Methods Mol Biol 310:217–226PubMedGoogle Scholar
  69. Martens CL, Cwirla SE, Lee RY, Whitehorn E, Chen EY, Bakker A, Martin EL, Wagstrom C, Gopalan P, Smith CW et al (1995) Peptides which bind to E-selectin and block neutrophil adhesion. J Biol Chem 270:21129–21136PubMedGoogle Scholar
  70. Maruta F, Parker AL, Fisher KD, Hallissey MT, Ismail T, Rowlands DC, Chandler LA, Kerr DJ, Seymour LW (2002) Identification of FGF receptor-binding peptides for cancer gene therapy. Cancer Gene Therapy 9:543–552PubMedGoogle Scholar
  71. Maruta F, Parker AL, Fisher KD, Murray PG, Kerr DJ, Seymour LW (2003) Use of a phage display library to identify oligopeptides binding to the lumenal surface of polarized endothelium by ex vivo perfusion of human umbilical veins. J Drug Target 11:53–59PubMedGoogle Scholar
  72. McGuire MJ, Samli KN, Chang YC, Brown KC (2006) Novel ligands for cancer diagnosis: selection of peptide ligands for identification and isolation of B-cell lymphomas. Exp Hematol 34:443–452PubMedGoogle Scholar
  73. Meredith RF, Bueschen AJ, Khazaeli MB, Plott WE, Grizzle WE, Wheeler RH, Schlom J, Russell CD, Liu T, LoBuglio AF (1994) Treatment of metastatic prostate carcinoma with radiolabeled antibody CC49. J Nucl Med 35:1017–1022PubMedGoogle Scholar
  74. Michon IN, Penning LC, Molenaar TJ, van Berkel TJ, Biessen EA, Kuiper J (2002) The effect of TGF-beta receptor binding peptides on smooth muscle cells. Biochem Biophys Res Commun 293:1279–1286PubMedGoogle Scholar
  75. Newton JR, Kelly KA, Mahmood U, Weissleder R, Deutscher SL (2006) In vivo selection of phage for the optical imaging PC-3 human prostate carcinoma in mice. Neoplasia 8:772–780PubMedGoogle Scholar
  76. Nowak JE, Chatterjee M, Mohapatra S, Dryden SC, Tainsky MA (2006) Direct production and purification of T7 phage display cloned proteins selected and analyzed on microarrays. Biotechniques 40:220–227PubMedGoogle Scholar
  77. Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Hoiden-Guthenberg I, Widstrom C, Carlsson J, Tolmachev V, Stahl S, Nilsson FY (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348PubMedGoogle Scholar
  78. Pakkala M, Jylhasalmi A, Wu P, Leinonen J, Stenman UH, Santa H, Vepsalainen J, Perakyla M, Narvanen A (2004) Conformational and biochemical analysis of the cyclic peptides which modulate serine protease activity. J Pept Sci 10:439–447PubMedGoogle Scholar
  79. Pan W, Arnone M, Kendall M, Grafstrom RH, Seitz SP, Wasserman ZR, Albright CF (2003) Identification of peptide substrates for human MMP-11 (stromelysin-3) using phage display. J Biol Chem 278:27820–27827PubMedGoogle Scholar
  80. Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366PubMedGoogle Scholar
  81. Peletskaya EN, Glinsky G, Deutscher SL, Quinn TP (1996) Identification of peptide sequences that bind the Thomsen-Friedenreich cancer-associated glycoantigen from bacteriophage peptide display libraries. Mol Divers 2:13–18PubMedGoogle Scholar
  82. Peletskaya EN, Glinsky VV, Glinsky GV, Deutscher SL, Quinn TP (1997) Characterization of peptides that bind the tumor-associated Thomsen-Friedenreich antigen selected from bacteriophage display libraries. J Mol Biol 270:374–384PubMedGoogle Scholar
  83. Ploug M, Østergaard S, Gårdsvoll H, Kovalski K, Holst-Hansen C, Holm A, Ossowski L, Danø K (2001) Peptide-derived antagonists of the urokinase receptor. Affinity maturation by combinatorial chemistry, identification of functional epitopes, and inhibitory effect on cancer cell intravasation. Biochemistry 40:12157–12168PubMedGoogle Scholar
  84. Popkov M, Rader C, Barbas CF, 3rd (2004) Isolation of human prostate cancer cell reactive antibodies using phage display technology. J Immunol Methods 291:137–151PubMedGoogle Scholar
  85. Rahim A, Coutelle C, Harbottle R (2003) High-throughput pyrosequencing of a phage display library for the identification of enriched target-specific peptides. Biotechniques 35:317–320, 322, 324PubMedGoogle Scholar
  86. Rasmussen UB, Schreiber V, Schultz H, Mischler F, Schughart K (2002) Tumor cell-targeting by phage-displayed peptides. Cancer Gene Ther 9:606–612PubMedGoogle Scholar
  87. Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427PubMedGoogle Scholar
  88. Robinson P, Stuber D, Deryckere F, Tedbury P, Lagrange M, Orfanoudakis G (2005) Identification using phage display of peptides promoting targeting and internalization into HPV-transformed cell lines. J Mol Recognit 18:175–182PubMedGoogle Scholar
  89. Romanov VI, Durand DB, Petrenko VA (2001) Phage display selection of peptides that affect prostate carcinoma cells attachment and invasion. Prostate 47:239–251PubMedGoogle Scholar
  90. Rusckowski M, Gupta S, Liu G, Dou S, Hnatowich DJ (2004) Investigations of a (99m)Tc-labeled bacteriophage as a potential infection-specific imaging agent. J Nucl Med 45:1201–1208PubMedGoogle Scholar
  91. Samoylov AM, Samoylova TI, Hartell MG, Pathirana ST, Smith BF, Vodyanoy V (2002) Recognition of cell-specific binding of phage display derived peptides using an acoustic wave sensor. Biomol Eng 18:269–272PubMedGoogle Scholar
  92. Shukla GS, Krag DN (2005) Phage display selection for cell-specific ligands: development of a screening procedure suitable for small tumor specimens. J Drug Target 13:7–18PubMedGoogle Scholar
  93. Sivolapenko GB, Skarlos D, Pectasides D, Stathopoulou E, Milonakis A, Sirmalis G, Stuttle A, Courtenay-Luck NS, Konstantinides K, Epenetos AA (1998) Imaging of metastatic melanoma utilising a technetium-99m labelled RGD-containing synthetic peptide. Eur J Nucl Med 25:1383–1389PubMedGoogle Scholar
  94. Skelton NJ, Chen YM, Dubree N, Quan C, Jackson DY, Cochran A, Zobel K, Deshayes K, Baca M, Pisabarro MT, Lowman HB (2001) Structure-function analysis of a phage display-derived peptide that binds to insulin-like growth factor binding protein 1. Biochemistry 40:8487–8498PubMedGoogle Scholar
  95. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317PubMedGoogle Scholar
  96. Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL, Miller JH, Arap W, Pasqualini R (2006) Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci USA 103:1215–1220PubMedGoogle Scholar
  97. Spear MA, Breakefield XO, Beltzer J, Schuback D, Weissleder R, Pardo FS, Ladner R (2001) Isolation, characterization, and recovery of small peptide phage display epitopes selected against viable malignant glioma cells. Cancer Gene Ther 8:506–511PubMedGoogle Scholar
  98. Stortelers C, Souriau C, van Liempt E, van de Poll ML, van Zoelen EJ (2002) Role of the N-terminus of epidermal growth factor in ErbB-2/ErbB-3 binding studied by phage display. Biochemistry 41:8732–8741PubMedGoogle Scholar
  99. Su ZF, Liu G, Gupta S, Zhu Z, Rusckowski M, Hnatowich DJ (2002) In vitro and in vivo evaluation of a Technetium-99m-labeled cyclic RGD peptide as a specific marker of alpha(V)beta(3) integrin for tumor imaging. Bioconjugate Chem 13:561–570Google Scholar
  100. Urbanelli L, Ronchini C, Fontana L, Menard S, Orlandi R, Monaci P (2001) Targeted gene transduction of mammalian cells expressing the HER2/neu receptor by filamentous phage. J Mol Biol 313:965–976PubMedGoogle Scholar
  101. Van de Wiele C, Dumont F, Dierckx RA, Peers SH, Thornback JR, Slegers G, Thierens H (2001) Biodistribution and dosimetry of (99m)Tc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor-expressing malignancies. J Nucl Med 42:1722–1727PubMedGoogle Scholar
  102. van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–298PubMedGoogle Scholar
  103. Vidal CI, Mintz PJ, Lu K, Ellis LM, Manenti L, Giavazzi R, Gershenson DM, Broaddus R, Liu J, Arap W, Pasqualini R (2004) An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients. Oncogene 23:8859–8867PubMedGoogle Scholar
  104. Virgolini I (1997) Mack Forster Award Lecture. Receptor nuclear medicine: vasointestinal peptide and somatostatin receptor scintigraphy for diagnosis and treatment of tumour patients. Eur J Clin Invest 27:793–800PubMedGoogle Scholar
  105. Voss SD, DeGrand AM, Romeo GR, Cantley LC, Frangioni JV (2002) An integrated vector system for cellular studies of phage display-derived peptides. Anal Biochem 308:364–372PubMedGoogle Scholar
  106. Walter G, Konthur Z, Lehrach H (2001) High-throughput screening of surface displayed gene products. Comb Chem High Throughput Screen 4:193–205PubMedGoogle Scholar
  107. Waltz E (2006) After criticism, more modest cancer genome project takes shape. Nat Med 12:259Google Scholar
  108. Wang W, Ke S, Wu Q, Charnsangavej C, Gurfinkel M, Gelovani JG, Abbruzzese JL, Sevick-Muraca EM, Li C (2004) Near-infrared optical imaging of integrin alphavbeta3 in human tumor xenografts. Mol Imaging 3:343–351PubMedGoogle Scholar
  109. Weber WA, Haubner R, Vabuliene E, Kuhnast B, Wester HJ, Schwaiger M (2001) Tumor angiogenesis targeting using imaging agents. Q J Nucl Med 45:179–182PubMedGoogle Scholar
  110. Yang SQ, Craik CS (1998) Engineering bidentate macromolecular inhibitors for trypsin and urokinase-type plasminogen activator. J Mol Biol 279:1001–1011PubMedGoogle Scholar
  111. Ye Y, Bloch S, Xu B, Achilefu S (2006) Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors. J Med Chem 49:2268–2275PubMedGoogle Scholar
  112. Zitzmann S, Mier W, Schad A, Kinscherf R, Askoxylakis V, Kramer S, Altmann A, Eisenhut M, Haberkorn U (2005) A new prostate carcinoma binding peptide (DUP-1) for tumor imaging and therapy. Clin Cancer Res 11:139–146PubMedGoogle Scholar
  113. Zou J, Dickerson MT, Owen NK, Landon LA, Deutscher SL (2004) Biodistribution of filamentous phage peptide libraries in mice. Mol Biol Rep 31:121–129PubMedGoogle Scholar
  114. Zou J, Glinsky VV, Landon LA, Matthews L, Deutscher SL (2005) Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion. Carcinogenesis 26:309–318PubMedGoogle Scholar
  115. Zurita AJ, Troncoso P, Cardo-Vila M, Logothetis CJ, Pasqualini R, Arap W (2004) Combinatorial screenings in patients: the interleukin-11 receptor alpha as a candidate target in the progression of human prostate cancer. Cancer Res 64:435–439PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of MissouriColumbia

Personalised recommendations