Advertisement

Enzymes/Transporters

  • Regine Garcia Boy
  • Eva-Maria Knapp
  • Michael Eisenhut
  • Uwe Haberkorn
  • Walter MierEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 185/2)

Abstract

Tracers that specifically target tumours are highly warranted for diagnosis and to monitor cancer chemotherapy response. However, as cancer cells arise from normal cells they do not substantially differ from the normal cells and therefore tumour specific targets are rare. Fortunately, the process of malignant transformation is associated with the up- or down-regulation of enzymes and transporters that play a crucial role in tumour growth. Consequently diagnostic imaging procedures have attained their major success with tracers that target enzymes and transporters that are over-expressed in tumours. The glucose transporters, the multi drug resistance transporters (MDRPs), several kinases and the family of cathepsins are prominent examples for enzymes and receptors that can be targeted for molecular imaging.

Keywords

Glucose Transporter Glucose Isomerase Cationic Amino Acid Sodium Iodide Symporter Diagnostic Imaging Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bremer et al.(2001)
    Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7(6):743–748PubMedCrossRefGoogle Scholar
  2. Coulibaly et al.(1999)
    Coulibaly S et al (1999) Modulation of invasive properties of murine squamous carcinoma cells by heterologous expression of cathepsin B and cystatin C. Int J Cancer 83(4):526–531PubMedCrossRefGoogle Scholar
  3. Del Sol et al.(2001)
    Del Sole A et al (2001) Anatomical and biochemical investigation of primary brain tumours. Eur J Nucl Med 28(12):1851–1872PubMedCrossRefGoogle Scholar
  4. Dienel et al.(2001)
    Dienel GA et al (2001) Preferential labeling of glial and meningial brain tumors with [2-(14)C] acetate. J Nucl Med 42(8):1243–1250PubMedGoogle Scholar
  5. Furumoto et al.(2003)
    Furumoto S et al (2003) Tumor detection using 18F-labeled matrix metalloproteinase-2 inhibitor. Nucl Med Biol 30(2):119–125PubMedCrossRefGoogle Scholar
  6. Gutmann et al(2000).
    Gutmann H et al (2000) P-glycoprotein- and mrp2-mediated octreotide transport in renal proximal tubule. Br J Pharmacol 129(2):251–256PubMedCrossRefGoogle Scholar
  7. Haberkorn et al.(1997)
    Haberkorn U (1997) PET 2-fluoro-2-deoxyglucose uptake in rat prostate adenocarcinoma during chemotherapy with gemcitabine. J Nucl Med 38(8):1215–1221PubMedGoogle Scholar
  8. Haberkorn et al.(2001)
    Haberkorn U (2001) Apoptosis and changes in glucose transport early after treatment of Morris hepatoma with gemcitabine Eur J Nucl Med 28(4):418–425Google Scholar
  9. Hartman(1988).
    Hartmann H (1988) Enhanced in vitro inhibition of HIV-1 replication by 3-fluoro-3-deoxythymidine compared to several other nucleoside analogs. AIDS Res Hum Retroviruses 4(6):457–466PubMedCrossRefGoogle Scholar
  10. Hendrikse et al.(1999)
    Hendrikse NH (1999) Visualization of multidrug resistance in vivo. Eur J Nucl Med 26(3):283–293PubMedCrossRefGoogle Scholar
  11. Hu et al.(1998)
    Hu S (1998) Caspase-14 is a novel developmentally regulated protease. J Biol Chem 273(45):29648–29653PubMedCrossRefGoogle Scholar
  12. Hug et al.(1999)
    Hug H (1999) Rhodamine 110-linked amino acids and peptides as substrates to measure caspase activity upon apoptosis induction in intact cells. Biochemistry 38(42):13906–13911PubMedCrossRefGoogle Scholar
  13. Mills(1997).
    Mills CO (1997) Cholyllysyl fluroscein and related lysyl fluorescein conjugated bile acid analogues Yale J Biol Med 70(4):447–457Google Scholar
  14. Jacquier-Sarlin et al.(1996)
    Jacquier-Sarlin MR, Polla BS, Slosman DO (1996) Cellular basis of ECD brain retention. J Nucl Med 37(10):1694–1697PubMedGoogle Scholar
  15. Kuhnast et al.(2004)
    Kuhnast B (2004) Targeting of gelatinase activity with a radiolabeled cyclic HWGF peptide. Nucl Med Biol 31(3):337–444PubMedCrossRefGoogle Scholar
  16. Jager et al.(2001)
    Jager PL (2001) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 42(3):432–445PubMedGoogle Scholar
  17. Kaim et al.(2002)
    Kaim AH (2002) (18)F-FDG and (18)F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging 29(5):648–654PubMedCrossRefGoogle Scholar
  18. Li et al.(2002)
    Li WP (2002) DOTA-D-Tyr(1)-octreotate: a somatostatin analogue for labeling with metal and halogen radionuclides for cancer imaging and therapy. Bioconjug Chem 13(4):721–728PubMedCrossRefGoogle Scholar
  19. Louie et al.(2000)
    Louie AY (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18(3):321–325PubMedCrossRefGoogle Scholar
  20. MacLeod et al.(1994)
    MacLeod CL, Finley KD, Kakuda DK (1994) y(+)-type cationic amino acid transport: expression and regulation of the mCAT genes. J Exp Biol 196:109–121PubMedGoogle Scholar
  21. Matthes et al.(1988)
    Matthes E, Lehmann C, Scholz D, Rosenthal HA, Langen P (1988) Phosphorylation, anti-HIV activity and cytotoxicity of 3’-fluorothymidine. Biochem Biophys Res Commun. Jun 16; 153(2):825–31. PMID: 3164184 [PubMed - indexed for MEDLINE]PubMedCrossRefGoogle Scholar
  22. Miura et al.(1993)
    Miura M (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C elegans cell death gene ced-3. Cell 75(4):653–660PubMedCrossRefGoogle Scholar
  23. Navab et al.(1997)
    Navab R, Mort JS, Brodt P (1997) Inhibition of carcinoma cell invasion and liver metastases formation by the cysteine proteinase inhibitor E-64. Clin Exp Metastasis 15(2):121–129PubMedCrossRefGoogle Scholar
  24. Pauleit et al.(2003)
    Pauleit D (2003) Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-L-tyrosine. Eur J Nucl Med Mol Imaging 30(4):519–524PubMedGoogle Scholar
  25. Rasey et al.(2002)
    Rasey JS (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43(9):1210–1217PubMedGoogle Scholar
  26. Redwood et al.(1992)
    Redwood SM (1992) Abrogation of the invasion of human bladder tumor cells by using protease inhibitor(s). Cancer 69(5):1212–1219PubMedGoogle Scholar
  27. Saha et al.(1994)
    Saha GB, MacIntyre WJ, Go RT (1994) Radiopharmaceuticals for brain imaging.Semin Nucl Med 24(4):324–493PubMedCrossRefGoogle Scholar
  28. Schuhmann-Giampieri(1993).
    Schuhmann-Giampieri G (1993) Nonlinear pharmacokinetic modeling of a gadolinium chelate used as a liver-specific contrast agent for magnetic resonance imaging. Arzneimittelforschung 43(9):1020–1024PubMedGoogle Scholar
  29. Sherman(2002).
    Sherman SI (2002) Optimizing the outcomes of adjuvant radioiodine therapy in differentiated thyroid carcinoma. J Clin Endocrinol Metab 87(9):4059–4062PubMedCrossRefGoogle Scholar
  30. Shields(1998).
    Shields AF (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4(11):1334–1336PubMedCrossRefGoogle Scholar
  31. Som et al.(1980)
    Som P (1980) A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 21(7):670–675PubMedGoogle Scholar
  32. Suolinna et al.(1986)
    Suolinna EM (1986) Metabolism of 2-[18F]fluoro-2-deoxyglucose in tumor-bearing rats: chromatographic and enzymatic studies. Int J Rad Appl Instrum B 13(5):577–581PubMedGoogle Scholar
  33. Tung(1999).
    Tung CH (1999) Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjug Chem 10(5):892–896PubMedCrossRefGoogle Scholar
  34. Volkow et al.(1996)
    Volkow ND et al (1996) PET evaluation of the dopamine system of the human brain. J Nucl Med 37(7):1242–1256PubMedGoogle Scholar
  35. Walovitch et al.(1989)
    Walovitch RC (1989) Characterization of technetium-99m-L, L-ECD for brain perfusion imaging, Part 1: Pharmacology of technetium-99 m ECD in nonhuman primates. J Nucl Med 30(11):1892–1901PubMedGoogle Scholar
  36. Wester et al.(1999)
    Wester HJ (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40(1):205–212PubMedGoogle Scholar
  37. Pope et al.(1989)
    Pope LE et al (1989) Visualization of membrane-associated folate transport proteins. Adv Enzyme Regul 28:3–11PubMedCrossRefGoogle Scholar
  38. Yamamoto et al.(1990)
    Yamamoto T et al (1990) Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 170(1):223–230PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Regine Garcia Boy
    • 1
  • Eva-Maria Knapp
  • Michael Eisenhut
    • 2
  • Uwe Haberkorn
    • 1
  • Walter Mier
    • 1
    Email author
  1. 1.Abteilung für NuklearmedizinUniversitätsklinikum HeidelbergHeidelberg
  2. 2.Abteilung Radiopharmazeutische ChemieDeutsches KrebsforschungszentrumHeidelbergGermany

Personalised recommendations