Skip to main content

Small Molecule Receptors as Imaging Targets

  • Chapter
Book cover Molecular Imaging II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 185/2))

Abstract

The aberrant expression and function of certain receptors in tumours and other diseased tissues make them preferable targets for molecular imaging. PET and SPECT radionuclides can be used to label specific ligands with high affinity for the target receptors. The functional information obtained from imaging these receptors can be used to better understand the systems under investigation and for diagnostic and therapeutic applications. This review discusses some of the aspects of receptor imaging with small molecule tracers by PET and SPECT and reviews some of the tracers for the receptor imaging of tumours and brain, heart and lung disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abi Dargham A, Martinez D, Mawlawi O, Simpson N, Hwang DR, Slifstein M, Anjilvel, S, Pidcock J, Guo NN, Lombardo I, Mann JJ, Van Heertum R, Foged C, Halldin C, Laruelle M (2000) Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with [11 C]NNC 112 in humans: validation and reproducibility. J Cereb Blood Flow Metab 20: 225–243

    PubMed  Google Scholar 

  • Ali H, Rousseau J, van Lier JE (1994) Synthesis of (17α, 20E∕Z)Iodovinyl testosterone and 19-nortestosterone derivatives as potential radioligands for androgen and progesterone receptors. J Steroid Biochem Mol Biol 49:15–29

    PubMed  Google Scholar 

  • Ali H, Rousseau J, Ahmed N, Guertin V, Hochberg RB, van Lier JE (2003a) Synthesis of the 7α-cyano-(17α, 20E∕Z)-[125I]iodovinyl-19-nortestosterones: potential radioligands for androgen and progesterone receptors. Steroids 68:1163–1171

    PubMed  Google Scholar 

  • Ali H, Rousseau J, Paquette B, Dube C, Marko B, van Lier JE (2003b) Synthesis and biological properties of 7α-cyano derivatives of the (17α, 20E∕Z)-[125I]iodovinyl- and 16α-[125I]iodo-estradiols. Steroids 68:1189–1200

    PubMed  Google Scholar 

  • Andree B, Nyberg S, Ito H, Ginovart N, Brunner F, Jaquet F, Halldin C, Farde L (1998) Positron emission tomographic analysis of dose-dependent MDL 100,907 binding to 5-hydroxytryptamine-2A receptors in the human brain. J Clin Psychopharmacol 18:317–323

    PubMed  Google Scholar 

  • Anthonio RL, Brodde O-E, van Veldhuisen DJ, Scholtens E, Crijns HJGM, van Gilst WH (2000) β-Adrenoceptor density in chronic infarcted myocardium: a subtype specific decrease of β1-adrenoceptor density. Int J Cardiol 72:137–141

    PubMed  Google Scholar 

  • Antoni G, Ulin J, Langstrom B (1989) Synthesis of the 11C-labelled β-adrenergic receptor ligands atenolol, metoprolol and propranolol. Appl Radiat Isot 40:561–564

    Google Scholar 

  • Antony AC (1996) Folate receptors. Annu Rev Nutr 16:501–521

    PubMed  Google Scholar 

  • Arnett CD, Wolf AP, Shiue CY, Fowler JS, MacGregor RR, Christman DR, Smith MR (1986) Improved delineation of human dopamine receptors using [18F]-N-methylspiroperidol and PET. J Nucl Med 27:1878–1882

    PubMed  Google Scholar 

  • Arterburn JB, Corona C, Rao KV, Carlson KE, Katzenellenbogen JA (2003) Synthesis of 17-α-substituted estradiol-pyridin-2-yl hydrazine conjugates as effective ligands for labeling with Alberto’s complex fac-[Re(OH2)3(CO)3]+ in water. J Org Chem 68:7063–7070

    PubMed  Google Scholar 

  • Asselin MC, Amano S, Chirakal R, Thompson M, Nahmias C (2002) Patterns of distribution of [18F]6-fluoro-L-m-tyrosine in PET images of patients with movement disorders. In: Senda M, Kimura Y, Herscovitch P (eds) Brain imaging with PET. Academic Press, San Diego

    Google Scholar 

  • Baeken C, D’haenen H, Flamen P, Mertens J, Terriere D, Chavatte K, Boumon R, Bossuyt A (1998) 123I-5-I-R91150, a new single-photon emission tomography ligand for 5-HT2A receptors: influence of age and gender in healthy subjects. Eur J Nucl Med Mol Imaging 25:1617–1622

    Google Scholar 

  • Balle T, Halldin C, Andersen L, Hjorth Alifrangis L, Badolo L, Gjervig Jensen K, Chou Y-W, Andersen K, Perregaard J, Farde L (2004) New α1-adrenoceptor antagonists derived from the antipsychotic sertindole-carbon-11 labelling and pet examination of brain uptake in the cynomolgus monkey. Nucl Med Biol 31:327–336

    PubMed  Google Scholar 

  • Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123:2321–2337

    PubMed  Google Scholar 

  • Barnes PJ (2004) Distribution of receptor targets in the lung. Proc Am Thorac Soc 1:345–351

    PubMed  Google Scholar 

  • Barrio JR, Huang SC, Phelps ME (1997) Biological imaging and the molecular basis of dopaminergic diseases. Biochem Pharmacol 54:341–348

    PubMed  Google Scholar 

  • Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q, Luthra SK, Brady F, Price PM, Aboagye EO (2003) 3-Deoxy-3-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 63:3791–3798

    PubMed  Google Scholar 

  • Beer HF, Blauenstein PA, Hasler PH, Delaloye B, Riccabona G, Banger I, Hunkeler W, Bonetti EP, Pieri L, Richards JG, Schubiger PA (1990) In vitro and in vivo evaluation of iodine-123-Ro 16-0154: a new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med 31:1007–1014

    PubMed  Google Scholar 

  • Bencherif B, Guarda AS, Colantuoni C, Ravert HT, Dannals RF, Frost JJ (2005) Regional μ-opioid receptor binding in insular cortex is decreased in bulimia nervosa and correlates inversely with fasting behavior. J Nucl Med 46:1349–1351

    PubMed  Google Scholar 

  • Bennink RJ, Rijks LJ, van Tienhoven G, Noorduyn LA, Janssen AG, Sloof GW (2001) estrogen receptor status in primary breast cancer: iodine 123-labeled cis-11β-methoxy-17α-iodovinyl estradiol scintigraphy. Radiology 220:774–779

    PubMed  Google Scholar 

  • Bennink RJ, van Tienhoven G, Rijks LJ, Noorduyn AL, Janssen AG, Sloof GW (2004) In vivo prediction of response to antiestrogen treatment in estrogen receptor-positive breast cancer. J Nucl Med 45:1–7

    PubMed  Google Scholar 

  • Berardi F, Ferorelli S, Abate C, Colabufo NA, Contino M, Perrone R, Tortorella V (2004) 4-(Tetralin-1-yl)- and 4-(naphthalen-1-yl)alkyl derivatives of 1-cyclohexylpiperazine as σ receptor ligands with agonist σ2 activity. J Med Chem 47:2308–2317

    PubMed  Google Scholar 

  • Berardi F, Ferorelli S, Abate C, Pedone MP, Colabufo NA, Contino M, Perrone R (2005) methyl substitution on the piperidine ring of N-[-(6-methoxynaphthalen-1-yl)alkyl] derivatives as a probe for selective binding and activity at the σ1 receptor. J Med Chem 48:8237–8244

    PubMed  Google Scholar 

  • Bettio A, Honer M, Muller C, Bruhlmeier M, Muller U, Schibli R, Groehn V, Schubiger AP, Ametamey SM (2006) Synthesis and preclinical evaluation of a folic acid derivative labeled with 18F for PET imaging of folate receptor-positive tumors. J Nucl Med 47:1153–1160

    PubMed  Google Scholar 

  • Bigott HM, Parent E, Luyt LG, Katzenellenbogen JA, Welch MJ (2005) design and synthesis of functionalized cyclopentadienyl tricarbonylmetal complexes for technetium-94m PET imaging of estrogen receptors. Bioconjugate Chem 16:255–264

    Google Scholar 

  • Billings JJ, Kung M-P, Chumpradit S, Mozley D, Alavi A, Kung HF (1992) Characterization of radioiodinated TISCH: a high-affinity and selective ligand for mapping CNS D1 dopamine receptor. J Neurochem 58:227–236

    PubMed  Google Scholar 

  • Blanckaert P, Burvenich I, Staelens L, Dierckx RA, Slegers G (2005) Synthesis, radiosynthesis and in vivo evaluation in mice of [123I]-(4-fluorophenyl) {1-[2-(4-iodophenyl)ethyl]piperidin-4-yl}methanone for visualization of the 5-HT2A receptor with SPECT. Appl Radiat Isot 62: 737–743

    PubMed  Google Scholar 

  • Blin J, Sette G, Fiorelli M, Bletry O, Elghozi JL, Crouzel C, Baron JC (1990) A method for the in vivo investigation of the serotonergic 5-HT2 receptors in the human cerebral cortex using positron emission tomography and 18F-labeled setoperone. J Neurochem 54:1744–1754

    PubMed  Google Scholar 

  • Boja JW, Patel A, Ivy Carroll F, Abdur Rahman M, Philip A, Lewin AH, Kopajtic TA, Kuhar MJ (1991) [125I]RTI-55: a potent ligand for dopamine transporters. Eur J Pharmacol 194:133–134

    PubMed  Google Scholar 

  • Bonasera TA, O’Neil JP, Xu M, Dobkin JA, Cutler PD, Lich LL, Choe YS, Katzenellenbogen JA, Welch MJ (1996) preclinical evaluation of fluorine-18-labeled androgen receptor ligands in baboons. J Nucl Med 37:1009–1015

    PubMed  Google Scholar 

  • Bradley TC, Tanjore KN, Bingzhi S, Jogeshwar M (2000) Quantitation of striatal and extrastriatal D-2 dopamine receptors using PET imaging of [18F]fallypride in nonhuman primates. Synapse 38:71–79

    Google Scholar 

  • Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P (1986) β1 and β2-adrenergic subpopulations in non-failing and failing human ventricle myocardium: coupling of both receptor subtypes to muscle contraction and selective β1 receptor downregulation in heart failure. Circ Res 59:297–309

    PubMed  Google Scholar 

  • Bristow MR, Minobe W, Rasmussen R, Hershberger RE, Hoffman BB (1988) α1 adrenergic receptors in the nonfailing and failing human heart. J Pharmacol Exp Ther 247:1039–1045

    PubMed  Google Scholar 

  • Brodde OE (1991) β1 and β2 adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242

    PubMed  Google Scholar 

  • Burn DJ, O’Brien JT (2003) Use of functional imaging in Parkinsonism and dementia. Mov Disord 18:S88–S95

    PubMed  Google Scholar 

  • Burns HD, Dannals RF, Langstrom B, Ravert HT, Zemyan SE, Duelfer T, Wong DF, Frost JJ, Kuhar MJ, Wagner HN Jr, (1984) (3-N-[11C]methyl)spiperone, a ligand binding to dopamine receptors: radiochemical synthesis and biodistribution studies in mice. J Nucl Med 25: 1222–1227

    PubMed  Google Scholar 

  • Camargo EE (2001) Brain SPECT in neurology and psychiatry. J Nucl Med 42:611–623

    PubMed  Google Scholar 

  • Camsonne R, Crouzel C, Comar D, Mazière M, Prenant C, Sastre J, Moulin M, Syrota A (1984) Synthesis of N-(11C) methyl, N-(methyl-1 propyl), (chloro-2 phenyl)-1 isoquinoleine carboxamide-3 (PK 11195): a new ligand for peripheral benzodiazepine receptors. J Labelled Comp Radiopharm 21:985–991

    Google Scholar 

  • Cappelli A, Matarrese M, Moresco RM, Valenti S, Anzini M, Vomero S, Turolla EA, Belloli S, Simonelli P, Filannino MA (2006) Synthesis, labeling, and biological evaluation of halogenated 2-quinolinecarboxamides as potential radioligands for the visualization of peripheral benzodiazepine receptors. Bioorg Med Chem 14:4055–4066

    PubMed  Google Scholar 

  • Castellano M, Bohm M (1997) The cardiac β-adrenoceptor-mediated signaling pathway and its alterations in hypertensive heart disease. Hypertension 29:715–722

    PubMed  Google Scholar 

  • Catafau AM, Danus M, Bullich S, Nucci G, Llop J, Abanades S, Cunningham VJ, Eersels JLH, Pavia J, Farre M (2006) Characterization of the SPECT 5-HT2A receptor ligand 123I-R91150 in healthy volunteers: part 2 – ketanserin displacement. J Nucl Med 47:929–937

    PubMed  Google Scholar 

  • Caulfield MP, Birdsall NJM (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    PubMed  Google Scholar 

  • Caveliers V, Everaert H, Lahoutte T, Dierickx LO, John CS, Bossuyt A (2001) Labelled sigma receptor ligands: can their role in neurology and oncology be extended? Eur J Med Chem 28:133–135

    Google Scholar 

  • Caveliers V, Everaert H, John CS, Lahoutte T, Bossuyt A (2002) Sigma receptor scintigraphy with N-[2-(1’-piperidinyl)ethyl]-3-123I-iodo-4-methoxybenzamide of patients with suspected primary breast cancer: first clinical results. J Nucl Med 43:1647–1649

    PubMed  Google Scholar 

  • Chang YS, Jeong JM, Yoon YH, Kang WJ, Lee SJ, Lee DS, Chung J–K, Lee MC (2005) Biological properties of 2-[18F]fluoroflumazenil for central benzodiazepine receptor imaging. Nucl Med Biol 32:263–268

    PubMed  Google Scholar 

  • Choe YS, Katzenellenbogen JA (1995a) Synthesis of C-6 fluoroandrogens: evaluation of ligands for tumor receptor imaging. Steroids 60:414–422

    PubMed  Google Scholar 

  • Choe YS, Lidstrom PJ, Chi DY, Bonasera TA, Welch MJ, Katzenellenbogen JA (1995b) Synthesis of 11 β-[18F]fluoro-5 α-dihydrotestosterone and 11 β-[18F]fluoro-19-nor-5 α-dihydrotestosterone: preparation via halofluorination-reduction, receptor binding, and tissue distribution. J Med Chem 38:816–825

    PubMed  Google Scholar 

  • Choi SR, Yang B, Plossl K, Chumpradit S, Wey SP, Acton PD, Wheeler K, Mach RH, Kung HF (2001) Development of a Tc-99m labeled σ2 receptor-specific ligand as a potential breast tumor imaging agent. Nucl Med Biol 28:657–666

    PubMed  Google Scholar 

  • Choudhury L, Guzzetti S, Lefroy DC, Nihoyannopoulos P, McKenna WJ, Oakley CM, Camici PG (1996) Myocardial β adrenoceptors and left ventricular function in hypertrophic cardiomyopathy. Heart 75:50–54

    PubMed  Google Scholar 

  • Clark GM, Sledge GW Jr, Osborne CK, McGuire WL (1987) Survival from first recurrence: relative importance of prognostic factors in 1,015 breast cancer patients. J Clin Oncol 5:55–61

    PubMed  Google Scholar 

  • Clayson J, Jales A, Tyacke RJ, Hudson AL, Nutt DJ, Lewis JW, Husbands SM (2001) Selective δ–opioid receptor ligands:potential PET ligands based on naltrindole. Bioorg Med Chem Lett 11:939–943

    PubMed  Google Scholar 

  • Coenen HH, Laufer P, Stocklin G, Wienhard K, Pawlik G, Bocher-Schwarz HG, Heiss WD (1987) 3-N-(2-[18F]-fluoroethyl)-spiperone: a novel ligand for cerebral dopamine receptor studies with pet. Life Sci 40:81–88

    PubMed  Google Scholar 

  • Cohen RM, Carson RE, Sunderl T (2000) Opiate receptor avidity in the thalamus is sexually dimorphic in the elderly. Synapse 38:226–229

    PubMed  Google Scholar 

  • Colabufo NA, Berardi F, Contino M, Fazio F, Matarrese M, Moresco RM, Niso M, Perrone R, Tortorella V (2005) Distribution of sigma receptors in EMT-6 cells: preliminary biological evaluation of PB167 and potential for in vivo PET. J Pharm Pharmacol 57:1453–1460

    PubMed  Google Scholar 

  • Corr PB, Crafford WA (1981) Enhanced α–adrenergic responsiveness in ischemic myocardium: role of α-adrenergic blockade. Am Heart J 102:605–612

    PubMed  Google Scholar 

  • Cropley VL, Fujita M, Musachio JL, Hong J, Ghose S, Sangare J, Nathan PJ, Pike VW, Innis RB (2006) Whole-body biodistribution and estimation of radiation-absorbed doses of the dopamine D1 receptor radioligand 11C-NNC 112 in humans. J Nucl Med 47:100–104

    PubMed  Google Scholar 

  • Cui X, Schiff R, Arpino G, Osborne CK, Lee AV (2005) Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol 23:7721–7735

    PubMed  Google Scholar 

  • D’haenen H, Bossuyt A, Mertens J, Bossuyt–Piron C, Gijsemans M, Kaufman L (1992) SPECT imaging of serotonin 2 receptors in depression. Psychiatry Res 45:227–237

    PubMed  Google Scholar 

  • DaSilva JN, Kilbourn MR (1992) In vivo binding of [11C]tetrabenazine to vesicular monoamine transporters in mouse brain. Life Sci 51:593–600

    PubMed  Google Scholar 

  • DaSilva JN, Wilson AA, Nobrega JN, Jiwa D, Houle S (1996) Synthesis and autoradiographic localization of the dopamine D-1 agonists [11 C]SKF 75670 and [11C]SKF 82957 as potential PET radioligands. Appl Radiat Isot 47:279–284

    PubMed  Google Scholar 

  • De Groot TJ, van Waarde A, Elsinga PH, Visser GM, Brodde OE, Vaalburg W (1993) Synthesis and evaluation of 1-[18F]fluorometoprolol as a potential tracer for the visualization of β-adrenoceptors with PET. Nucl Med Biol 20:637–642

    PubMed  Google Scholar 

  • De Groot TJ, Braker AH, Elsinga PH, Visser GM, Vaalburg W (1994) Synthesis of 6 α-[18F]fluoroprogesterone: a first step towards a potential receptor-ligand for PET. Appl Radiat Isot 45:811–813

    PubMed  Google Scholar 

  • De Jong RM, Willemsen AT, Slart RH, Blanksma PK, van Waarde A, Cornel JH, Vaalburg W, van Veldhuisen DJ, Elsinga PH (2005) Myocardial β-adrenoceptor downregulation in idiopathic dilated cardiomyopathy measured in vivo with PET using the new radioligand (S)-[11C]CGP12388. Eur J Nucl Med Mol Imaging 32:443–447

    PubMed  Google Scholar 

  • De La Fuente-Fernández R, Furtado S, Guttman M, Furukawa Y, Lee CS, Calne DB, Ruth TJ, Stoessl AJ (2003) VMAT2 binding is elevated in dopa-responsive dystonia: visualizing empty vesicles by PET. Synapse 49:20–28

    Google Scholar 

  • Dean B (2003) The cortical serotonin2A receptor and the pathology of schizophrenia: a likely accomplice. J Neurochem 85:1–13

    PubMed  Google Scholar 

  • Defraiteur C, Lemaire C, Luxen A, Plenevaux A (2006) Radiochemical synthesis and tissue distribution of p-[18F]DMPPF, a new 5 −HT1A ligand for PET, in rats. Nucl Med Biol 33:667–675

    PubMed  Google Scholar 

  • Dehdashti F, McGuire AH, Van Brocklin HF, Siegel BA, Andriole DP, Griffeth LK, Pomper MG, Katzenellenbogen JA, Welch MJ (1991) Assessment of 21-[18F]fluoro-16 α-ethyl-19-norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas. J Nucl Med 32:1532–1537

    PubMed  Google Scholar 

  • Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ, Detert DD, Cutler PD, Katzenellenbogen JA, Welch MJ (1995) Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med 36:1766–1774

    PubMed  Google Scholar 

  • Dehdashti F, Picus J, Michalski JM, Dence CS, Siegel BA, Katzenellenbogen JA, Welch MJ (2005) Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 32:344–350

    PubMed  Google Scholar 

  • Delahaye N, Le Guludec D, Dinanian S, Delforge J, Slama MS, Sarda L, Dolle F, Mzabi H, Samuel D, Adams D, Syrota A, Merlet P (2001) Myocardial muscarinic receptor upregulation and normal response to isoproterenol in denervated hearts by familial amyloid polyneuropathy. Circulation 104:2911–2916

    PubMed  Google Scholar 

  • Delforge J, Janier M, Syrota A, Crouzel C, Vallois JM, Cayla J, Lancon JP, Mazoyer BM (1990) Noninvasive quantification of muscarinic receptors in vivo with positron emission tomography in the dog heart. Circulation 82:1494–1504

    PubMed  Google Scholar 

  • Dence CS, John CS, Bowen WD, Welch MJ (1997) Synthesis and evaluation of [18F] labeled benzamides: high affinity sigma receptor ligands for PET imaging. Nucl Med Biol 24: 333–340

    PubMed  Google Scholar 

  • Denis LJ, Griffiths K (2000) Endocrine treatment in prostate cancer. Semin Surg Oncol 18:52–74

    PubMed  Google Scholar 

  • Derry C, Benjamin C, Bladin P, le Bars D, Tochon-Danguy H, Berkovic SF, Zimmer L, Costes N, Mulligan R, Reutens D (2006) Increased serotonin receptor availability in human sleep:Evidence from an [18F]MPPF PET study in narcolepsy. Neuroimage 30:341–348

    PubMed  Google Scholar 

  • Dixit V, VandenBossche J, Sherman DM, Thompson DH, Andres RP (2006) Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjugate Chem 17:603–609

    Google Scholar 

  • Doze P, Elsinga PH, van Waarde A, Pieterman RM, Pruim J, Vaalburg W, Willemsen AT (2002a) Quantification of β-adrenoceptor density in the human heart with (S)-[11C]CGP 12388 and a tracer kinetic model. Eur J Nucl Med Mol Imaging 29:295–304

    PubMed  Google Scholar 

  • Doze P, van Waarde A, Tewson TJ, Vaalburg W, Elsinga PH (2002b) Synthesis and evaluation of (S)-[18F]-fluoroethylcarazolol for in vivo β-adrenoceptor imaging in the brain. Neurochem Int 41:17–27

    PubMed  Google Scholar 

  • Drew GM (1976) Effects of α-adrenoceptor agonists and antagonists on pre- and postsynaptically located α-adrenoceptors. Eur J Pharmacol 36:313–320

    PubMed  Google Scholar 

  • Drummond AE (2006) The role of steroids in follicular growth. Reprod Biol Endocrinol 10:4–16

    Google Scholar 

  • Eckelman WC (2006) Imaging of muscarinic receptors in the central nervous system. Curr Pharm Des 12:3901–3913

    PubMed  Google Scholar 

  • Ehrin E, Luthra SK, Crouzel C, Pike VW (1988) Preparation of carbon-11 labelled prazosin, a potent and selective 1-adrenoreceptor antagonist. J Labelled Comp Radiopharm 25:177–183

    Google Scholar 

  • Elsinga PH, Van Waarde A, Visser GM, Vaalburg W (1994) Synthesis and preliminary evaluation of (R,S)-1-[2-((Carbamoyl-4-hydroxy)phenoxy)-ethylamino]-3-[4-(1-[11C]-methyl-4-trifluoromethyl-2-imidazolyl)phenoxy]-2-propanol ([11C]CGP 20712A) as a selective β1-adrenoceptor ligand for PET. Nucl Med Biol 21:211–217

    PubMed  Google Scholar 

  • Elsinga PH, Vos MG, van Waarde A, Braker AH, de Groot TJ, Anthonio RL, Weemaes A-MA, Brodde O-E, Visser GM, Vaalburg W (1996) (S,S)- and (S,R)-1− [18F]fluorocarazolol, ligands for the visualization of pulmonary β-adrenergic receptors with PET. Nucl Med Biol 23: 159–167

    PubMed  Google Scholar 

  • Elsinga PH, van Waarde A, Jaeggi KA, Schreiber G, Heldoorn M, Vaalburg W (1997) Synthesis and Evaluation of (S)-4-(3-(2− [11C]Isopropylamino)-2-hydroxypropoxy)-2H-benzimidazol-2-one ((S)-[11C]CGP 12388) and (S)-4 − (3 − ((1− [18F]Fluoroisopropyl)amino)-2-hydroxypropoxy)-2H-benzimidazol-2-one ((S)-[18F]Fluoro-CGP 12388) for visualization of β-adrenoceptors with positron emission tomography. J Med Chem 40:3829–3835

    PubMed  Google Scholar 

  • Elsinga PH, van Waarde A, Vaalburg W (2004) Receptor imaging in the thorax with PET. Eur J Pharmacol 499:1–13

    PubMed  Google Scholar 

  • Elsinga HP, Hatano K, Ishiwata K (2006) PET tracers for imaging of the dopaminergic system. Curr Med Chem 13:2139–2153

    PubMed  Google Scholar 

  • Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedstrom CG, Litton JE, Sedvall G (1985) Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci U S A 82:3863–3867

    PubMed  Google Scholar 

  • Farde L, Halldin C, Stone-Elander S, Sedvall G (1987) PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacology (Berl) 92:278–284

    Google Scholar 

  • Ferris CD, Hirsch DJ, Brooks BP, Snyder SH (1991) Sigma receptors: from molecule to man. J Neurochem 57:729–737

    PubMed  Google Scholar 

  • Fischman AJ (2005) Role of [18F]-dopa-PET imaging in assessing movement disorders. Radiol Clin North Am 43:297–304

    Google Scholar 

  • Foged C, Halldin C, Loc’h C, Maziere B, Karlsson P, Maziere M, Swahn C-G, Farde L (1996) 11C- and 76Br-labelled NNC 22-0010, selective dopamine D1 receptor radioligands for PET. Nucl Med Biol 23:837–844

    PubMed  Google Scholar 

  • Foged C, Halldin C, Loc’h C, Mazière B, Pauli S, Maziére M, Hansen HC, Suhara T, Swahn CG, Karlsson P, Farde L (1997) Bromine-76 and carbon-11 labelled NNC 13-8199, metabolically stable benzodiazepine receptor agonists as radioligands for positron emission tomography (PET). Eur J Nucl Med Mol Imaging 24:1261–1267

    Google Scholar 

  • Foged C, Halldin C, Swahn CG, Ginovart N, Karlsson P, Lundkvist C, Farde L (1998) [11C]NNC 22-0215, a metabolically stable dopamine D1 radioligand for PET. Nucl Med Biol 25:503–508

    PubMed  Google Scholar 

  • Forbes JF (1997) The incidence of breast cancer: the global burden, public health considerations. Semin Oncol 24:S1-20–S21-35

    Google Scholar 

  • Forutan F, Estalji S, Beu M, Nikolaus S, Hamacher K, Coenen NN, Vosberg V (2002) Distribution of 5HT2A receptors in the human brain: comparison of data in vivo and post mortem. Nuklearmedizin 41:197–201

    PubMed  Google Scholar 

  • Frankle WG, Huang Y, Hwang D-R, Talbot PS, Slifstein M, Van Heertum R, Abi-Dargham A, Laruelle M (2004) Comparative evaluation of serotonin transporter radioligands 11C-DASB and 11C-McN 5652 in healthy humans. J Nucl Med 45:682–694

    PubMed  Google Scholar 

  • Frost JJ, Wagner HN Jr, Dannals RF, Ravert HT, Links JM, Wilson AA, Burns HD, Wong DF, McPherson RW, Rosembaum AE, Kuhar MJ, Snyder SH (1985) Imaging opiate receptors in the human brain by positron emission tomography. J Comput Assist Tomogr 9:231–236

    PubMed  Google Scholar 

  • Frost JJ, Smith AC, Kuhar MJ, Dannals RF, Wagner HN Jr (1987) In vivo binding of 3H-N-methylspiperone to dopamine and serotonin receptors. Life Sci 40:987–995

    PubMed  Google Scholar 

  • Fu X, Tan PZ, Kula NS, Baldessarini R, Tamagnan G, Innis RB, Baldwin RM (2002) Synthesis, Receptor Potency, and Selectivity of Halogenated Diphenylpiperidines as Serotonin 5-HT2A Ligands for PET or SPECT Brain Imaging. J Med Chem 45:2319–2324

    PubMed  Google Scholar 

  • Furukawa T, Lohith TG, Takamatsu S, Mori T, Tanaka T, Fujibayashi Y (2006) Potential of the FES-hERL PET reporter gene system – Basic evaluation for gene therapy monitoring. Nucl Med Biol 33:145–151

    PubMed  Google Scholar 

  • Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S (2004) Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 56:1177–1192

    PubMed  Google Scholar 

  • Garg PK, Labaree DC, Hoyte RM, Hochberg RB (2001) 7α-[18F]fluoro-17α-methyl-5α-dihydrotestosterone: a ligand for androgen receptor-mediated imaging of prostate cancer. Nucl Med Biol 28:85–90

    PubMed  Google Scholar 

  • Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138

    PubMed  Google Scholar 

  • Gerhard A, Schwarz J, Myers R, Wise R, Banati RB (2005) Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 24:591–595

    PubMed  Google Scholar 

  • Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    PubMed  Google Scholar 

  • Gibson RE, Weckstein DJ, Jagoda EM, Rzeszotarski WJ, Reba RC, Eckelman WC (1984) The characteristics of I-125 4-IQNB and H-3 QNB in vivo and in vitro. J Nucl Med 25:214–222

    PubMed  Google Scholar 

  • Giembycz MA, Newton R (2006) Beyond the dogma: novel β2-adrenoceptor signalling in the airways. Eur Respir J 27:1286–1306

    PubMed  Google Scholar 

  • Göran S, Lars F, Allen B, Hakan H, Christer H (1991) 11C-SCH 39166, a selective ligand for visualization of dopamine-D1 receptor binding in the monkey brain using PET. Psychopharmacology (Berl) 103:150–153

    Google Scholar 

  • Gosens R, Zaagsma J, Meurs H, Halayko AJ (2006) Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir Res 7:73

    PubMed  Google Scholar 

  • Goswami R, Ponde DE, Kung M-P, Hou C, Kilbourn MR, Kung HF (2006) Fluoroalkyl derivatives of dihydrotetrabenazine as positron emission tomography imaging agents targeting vesicular monoamine transporters. Nucl Med Biol 33:685–694

    PubMed  Google Scholar 

  • Greenwald M, K., Johanson CE, Moody DE, Woods J, H., Kilbourn MR, Koeppe RA, Schuster CR, Zubieta JK (2003) Effects of buprenorphine maintenance dose on μ-opioid receptor availability, plasma concentrations, and antagonist blockade in heroin-dependent volunteers. Neuropsychopharmacology 28:2000–2009

    PubMed  Google Scholar 

  • Gründer G, Siessmeier T, Lange-Asschenfeldt C, Vernaleken I, Buchholz HG, Stoeter P, Drzezga A, Lüddens H, Rösch F, Bartenstein P (2001) [18F]Fluoroethylflumazenil: a novel tracer for PET imaging of human benzodiazepine receptors. Eur J Nucl Med Mol Imaging 28: 1463–147

    Google Scholar 

  • Guimaraes S, Moura D (2001) Vascular adrenoceptors: an update. Pharmacol Rev 53:319–356

    PubMed  Google Scholar 

  • Guo W, Hinkle GH, Lee RJ (1999) 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 40:1563–1569

    PubMed  Google Scholar 

  • Halldin C, Stone-Elander S, Farde L, Ehrin E, Fasth KJ, Langstrom B, Sedvall G (1986) Preparation of 11C-labelled SCH 23390 for the in vivo study of dopamine D-1 receptors using positron emission tomography. Int J Rad Appl Instrum [A] 37:1039–1043

    Google Scholar 

  • Halldin C, Farde L, Hogberg T, Mohell N, Hall H, Suhara T, Karlsson P, Nakashima Y, Swahn CG (1995) Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med 36:1275–1281

    PubMed  Google Scholar 

  • Halldin C, Foged C, Chou YH, Karlsson P, Swahn CG, Sandell J, Sedvall G, Farde L (1998) Carbon-11-NNC 112: a radioligand for PET examination of striatal and neocortical D1-dopamine receptors. J Nucl Med 39:2061–2068

    PubMed  Google Scholar 

  • Harvey RD, Belevych AE (2003) Muscarinic regulation of cardiac ion channels. Br J Pharmacol 139:1074–1084

    PubMed  Google Scholar 

  • Hashimoto K, Ishiwata K (2006) sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals. Curr Pharm Des 12:3857–3876

    PubMed  Google Scholar 

  • Heimbold I, Drews A, Syhre R, Kretzschmar M, Pietzsch H-J, Johannsen B (2002) A novel technetium-99m radioligand for the 5-HT1A receptor derived from desmethyl-WAY-100635 (DWAY). Eur J Nucl Med Mol Imaging 29:82–87

    PubMed  Google Scholar 

  • Hein L (2006) Adrenoceptors and signal transduction in neurons. Cell Tissue Res 326:541–551

    PubMed  Google Scholar 

  • Heinlein AC, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308

    PubMed  Google Scholar 

  • Heinz A, Reimold M, Wrase J, Hermann D, Croissant B, Mundle G, Dohmen BM, Braus DH, Schumann G, Machulla H-J, Bares R, Mann K (2005) Correlation of stable elevations in striatal μ-opioid receptor availability in detoxified alcoholic patients with alcohol craving: a positron emission tomography study using carbon 11-labeled carfentanil. Arch Gen Psychiatry 62: 57–64

    PubMed  Google Scholar 

  • Heiss WD, Herholz K (2006) Brain receptor imaging. J Nucl Med 47:302–312

    PubMed  Google Scholar 

  • Henkel K, Karitzky J, Schmid M, Mader I, Glatting G, Unger JW, Neumaier B, Ludolph AC, Reske SN, Landwehrmeyer GB (2004) Imaging of activated microglia with PET and [11C]PK 11195 in corticobasal degeneration. Mov Disord 19:817–821

    PubMed  Google Scholar 

  • Henriksen G, Platzer S, Marton J, Hauser A, Berthele A, Schwaiger M, Marinelli L, Lavecchia A, Novellino E, Wester HJ (2005) Syntheses, biological evaluation, and molecular modeling of 18F-labeled 4-anilidopiperidines as μ-opioid receptor imaging agents. J Med Chem 48: 7720–7732

    PubMed  Google Scholar 

  • Hesse S, Barthel H, Schwarz J, Sabri O, Muller U (2004) Advances in in vivo imaging of serotonergic neurons in neuropsychiatric disorders. Neurosci Biobehav Rev 28:547–563

    PubMed  Google Scholar 

  • Heusch G (1990) α–Adrenergic mechanisms in myocardial ischemia. Circulation 81:1–13

    PubMed  Google Scholar 

  • Hicks RJ, Kassiou M, Eu P, Katsifis AG, Garra M, Power J, Najdovski L, Lambrecht RM (1995) Iodine-123 N-methyl-4-iododexetimide:a new radioligand for single-photon emission tomographic imaging of myocardial muscarinic receptors. Eur J Nucl Med 22:339–345

    PubMed  Google Scholar 

  • Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94:2135–2146

    PubMed  Google Scholar 

  • Hopp TA, Weiss HL, Hilsenbeck SG, Cui Y, Allred DC, Horwitz KB, Fuqua SAW (2004) Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates. Clin Cancer Res 10:2751–2760

    PubMed  Google Scholar 

  • Hostetler ED, Jonson SD, Welch MJ, Katzenellenbogen JA (1999) Synthesis of 2–[18F]fluoroestradiol, a potential diagnostic imaging agent for breast cancer: strategies to achieve nucleophilic substitution of an electron–rich aromatic ring with [18F]F. J Org Chem 64:178–185

    PubMed  Google Scholar 

  • Hou C, Tu Z, Mach R, Kung HF, Kung M–P (2006) Characterization of a novel iodinated σ2 receptor ligand as a cell proliferation marker. Nucl Med Biol 33:203–209

    PubMed  Google Scholar 

  • Houle S, DaSilva JN, Wilson AA (2000) Imaging the 5-HT1A receptors with PET: WAY-100635 and analogues. Nucl Med Biol 27:463–466

    PubMed  Google Scholar 

  • Huang Y, Hammond PS, Whirrett BR, Kuhner RJ, Wu L, Childers SR, Mach RH (1998) synthesis and quantitative structure-activity relationships of N-(1-benzylpiperidin-4-yl)phenylacetamides and related analogues as potent and selective σ1 receptor ligands. J Med Chem 41:2361–2370

    PubMed  Google Scholar 

  • Huang Y, Narendran R, Bae SA, Erritzoe D, Guo N, Zhu Z, Hwang DR, Laruelle M (2004) A PET imaging agent with fast kinetics: synthesis and in vivo evaluation of the serotonin transporter ligand [11C]2-[2-dimethylaminomethylphenylthio)]-5-fluorophenylamine ([11C]AFA). Nucl Med Biol 31:727–738

    PubMed  Google Scholar 

  • Hume SP, Ashworth S, Lammertsma AA, Opacka-Juffry J, Law MP, McCarron JA, Clark RD, Nutt DJ, Pike VW (1996) Evaluation in rat of RS-79948-197 as a potential PET ligand for central α2-adrenoceptors. Eur J Pharmacol 317:67–73

    PubMed  Google Scholar 

  • Hume SP, Hirani E, Opacka-Juffry J, Osman S, Myers R, Gunn RN, McCarron JA, Clark RD, Melichar J, Nutt DJ, Pike VW (2000) Evaluation of [O-methyl-[11C]RS-15385-197 as a positron emission tomography radioligand for central α2-adrenoceptors. Eur J Nucl Med 27:475–484

    PubMed  Google Scholar 

  • Hwang DR, Narendran R, Huang Y, Slifstein M, Talbot PS, Sudo Y, Van Berckel BN, Kegeles LS, Martinez D, Laruelle M (2004) Quantitative analysis of (–)-N-11C-propyl-norapomorphine in vivo binding in nonhuman primates. J Nucl Med 45:338–346

    PubMed  Google Scholar 

  • Issa F, Kassiou M, Chan H, McLeod MD (2006) Synthesis and radiolabelling of ipratropium and tiotropium for use as pet ligands in the study of inhaled drug deposition. Aust J Chem 59:53–58

    Google Scholar 

  • Jacobson O, Bechor Y, Icar A, Novak N, Birman A, Marom H, Fadeeva L, Golan E, Leibovitch I, Gutman M (2005) Prostate cancer PET bioprobes: synthesis of [18F]-radiolabeled hydroxyflutamide derivatives. Bioorg Med Chem 13:6195–6205

    PubMed  Google Scholar 

  • Jacobson O, Laky D, Carlson KE, Elgavish S, Gozin M, Even-Sapir E, Leibovitc I, Gutman M, Chisin R, Katzenellenbogen JA, Mishani E (2006) Chiral dimethylamine flutamide derivatives–modeling, synthesis, androgen receptor affinities and carbon-11 labeling. Nucl Med Biol 33:695–704

    PubMed  Google Scholar 

  • Jakobsen S, Pedersen K, Smith DF, Jensen SB, Munk OL, Cumming P (2006) Detection of α2-adrenergic receptors in brain of living pig with 11C-yohimbine. J Nucl Med 47:2008–2015

    PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130

    PubMed  Google Scholar 

  • Jewett DM, Kilbourn MR (2004) In vivo evaluation of new carfentanil-based radioligands for the μ-opiate receptor. Nucl Med Biol 31:321–325

    PubMed  Google Scholar 

  • John CS, Vilner BJ, Gulden ME, Efange SM, Langason RB, Moody TW, Bowen WD (1995) Synthesis and pharmacological characterization of 4-[125I]-N-(N-benzylpiperidin-4-yl)-4-iodobenzamide: a high affinity sigma receptor ligand for potential imaging of breast cancer. Cancer Res 55:3022–3027

    PubMed  Google Scholar 

  • John CS, Bowen WD, Fisher SJ, Lim BB, Geyer BC, Vilner BJ, Wahl RL (1999a) Synthesis, in vitro pharmacologic characterization, and preclinical evaluation of N-[2-(1-piperidinyl)ethyl]-3-[125I]iodo-4-methoxybenzamide (P[125I]MBA) for imaging breast cancer. Nucl Med Biol 26:377–382

    PubMed  Google Scholar 

  • John CS, Vilner BJ, Geyer BC, Moody T, Bowen WD (1999b) Targeting sigma receptor-binding benzamides as in vivo diagnostic and therapeutic agents for human prostate tumors. Cancer Res 59:4578–4583

    PubMed  Google Scholar 

  • Johnston SRD, Saccani-Jotti G, Smith IE, Salter J, Newby J, Coppen M, Ebbs SR, Dowsett M (1995) Changes in estrogen receptor, progesterone receptor, and ps2 expression in tamoxifen-resistant human breast cancer. Cancer Res 55:3331–3338

    PubMed  Google Scholar 

  • Jonson SD, Bonasera TA, Dehdashti F, Cristel ME, Katzenellenbogen JA, Welch MJ (1999) Comparative breast tumor imaging and comparative in vitro metabolism of 16α-[18F]fluoroestradiol-17β and 16β-[18F]fluoromoxestrol in isolated hepatocytes. Nucl Med Biol 26:123–130

    PubMed  Google Scholar 

  • Jutkiewicz EM (2006) The antidepressant -like effects of δ-opioid receptor agonists. Mol Interv 6:162–169

    PubMed  Google Scholar 

  • Karlsson P, Farde L, Halldin C, Swahn CG, Sedvall G, Foged C, Hansen KT, Skrumsager B (1993) PET examination of [11C]NNC 687 and [11C]NNC 756 as new radioligands for the D1-dopamine receptor. Psychopharmacology (Berl) 113:149–156

    Google Scholar 

  • Karramkam M, Hinnen F, Berrehouma M, Hlavacek C, Vaufrey F, Halldin C, McCarron JA, Pike VW, Dolle F (2003) Synthesis of a [6-Pyridinyl-18F]-labelled fluoro derivative of WAY-100635 as a candidate radioligand for brain 5-HT1A receptor imaging with PET. Bioorg Med Chem 11:2769–2782

    PubMed  Google Scholar 

  • Kassiou M, Scheffel U, Ravert HT, Mathews WB, Musachio JL, Lambrecht RM, Dannals RF (1995) [11C]A–69024: a potent and selective non-benzazepine radiotracer for in vivo studies of dopamine D1 receptors. Nucl Med Biol 22:221–226

    PubMed  Google Scholar 

  • Kassiou M, Mardon K, Mattner F, Katsifis A, Dikic B (2001) Pharmacological evaluation of (+)-2-[123I]A-69024 A radioligand for in vivo studies of dopamine D1 receptors. Life Sci 69:669–675

    PubMed  Google Scholar 

  • Katchen B, Buxbaum S (1975) Disposition of a new, nonsteroid, antiandrogen α, α, α trifluoro 2 methyl 4 nitro m propionotoluidide (Flutamide), in men following a single oral 200 mg dose. J Clin Endocrinol Metab 41:373–379

    PubMed  Google Scholar 

  • Katsifis A, Mardon K, Mattner F, Loc’h C, McPhee ME, Dikic B, Kassiou M, Ridley DD (2003) Pharmacological evaluation of (S)-8-[123I]iodobretazenil: a radioligand for in vivo studies of central benzodiazepine receptors. Nucl Med Biol 30:191–198

    PubMed  Google Scholar 

  • Kawamura K, Elsinga PH, Kobayashi T, Ishii SI, Wang WF, Matsuno K, Vaalburg W, Ishiwata K (2003) Synthesis and evaluation of 11C- and 18F-labeled 1-[2-(4-alkoxy-3-methoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazines as sigma receptor ligands for positron emission tomography studies. Nucl Med Biol 30:273–284

    PubMed  Google Scholar 

  • Kawamura K, Kubota K, Kobayashi T, Elsinga PH, Ono M, Maeda M, Ishiwata K (2005) Evaluation of [11C]SA5845 and [11C]SA4503 for imaging of sigma receptors in tumors by animal PET. Ann Nucl Med 19:701–709

    PubMed  Google Scholar 

  • Ke CY, Mathias CJ, Yang Z–F, Luo J, Waters DJ, Low PS, Green MA (1999) Synthesis and evaluation of folate-bis(thiosemicarbazone) and folate-CYCLAM conjugates for possible use as folate-receptor-targeted copper radiopharmaceuticals. J Labelled Comp Radiopharm 42: S821–S823

    Google Scholar 

  • Ke CY, Mathias CJ, Green MA (2004) Folate-receptor-targeted radionuclide imaging agents. Adv Drug Deliv Rev 56:1143–1160

    PubMed  Google Scholar 

  • Kerenyi L, Ricaurte GA, Schretlen DJ, McCann U, Varga J, Mathews WB, Ravert HT, Dannals RF, Hilton J, Wong DF, Szabo Z (2003) Positron emission tomography of striatal serotonin transporters in Parkinson disease. Arch Neurol 60:1223–1229

    PubMed  Google Scholar 

  • Kessler RM (2003) Imaging methods for evaluating brain function in man. Neurobiol Aging 24:S21–S35

    PubMed  Google Scholar 

  • Kessler RM, Mason NS, Votaw JR, De Paulis T, Clanton JA, Ansari MS, Schmidt DE, Manning RG, Bell RL (1992) Visualization of extrastriatal dopamine D2 receptors in the human brain. Eur J Pharmacol 223:105–107

    PubMed  Google Scholar 

  • Khamssi M, Brodde OE (1990) The role of cardiac β1- and β2-adrenoceptor stimulation in heart failure. J Cardiovasc Pharmacol 16:S133–S137

    PubMed  Google Scholar 

  • Kies P, Wichter T, Schafers M, Paul M, Schafers KP, Eckardt L, Stegger L, Schulze–Bahr E, Rimoldi O, Breithardt G, Schober O, Camici PG (2004) abnormal myocardial presynaptic norepinephrine recycling in patients with brugada syndrome. Circulation 110:3017–3022

    PubMed  Google Scholar 

  • Kopka K, Wagner S, Riemann B, Law MP, Puke C, Luthra SK, Pike VW, Wichter T, Schmitz W, Schober O, Schafers M (2003) Design of new β1-selective adrenoceptor ligands as potential radioligands for in vivo imaging. Bioorg Med Chem 11:3513–3527

    PubMed  Google Scholar 

  • Kopka K, Law MP, Breyholz HJ, Faust A, Holtke C, Riemann B, Schober O, Schafers M, Wagner S (2005) Non-invasive molecular imaging of β-adrenoceptors in vivo:perspectives for PET-radioligands. Curr Med Chem 12:2057–2074

    PubMed  Google Scholar 

  • Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 93:5925–5930

    PubMed  Google Scholar 

  • Kumar JSD, Majo VJ, Hsiung SC, Millak MS, Liu KP, Tamir H, Prabhakaran J, Simpson NR, VanHeertum RL, Mann JJ, Parsey RV (2006) Synthesis and in vivo validation of [o-methyl-11C]2-{4-[4-(7-methoxynaphthalen-1-yl)piperazin-1-yl]butyl}-4-methyl-2h-[1,2,4]triazine-3,5-dione: a novel 5-HT1A receptor agonist positron emission tomography ligand. J Med Chem 49:125–134

    PubMed  Google Scholar 

  • Kung HF (2001) Development of Tc-99m labeled tropanes: TRODAT-1, as a dopamine transporter imaging agent. Nucl Med Biol 28:505–508

    PubMed  Google Scholar 

  • Kung HF, Guo YZ, Billings J, Xu X, Mach RH, Blau M, Ackerhalt RE (1988) Preparation and biodistribution of [125I]IBZM: a potential CNS D-2 dopamine receptor imaging agent. Int J Rad Appl Instrum B 15:195–201

    PubMed  Google Scholar 

  • Kung HF, Pan S, Kung MP, Billings J, Kasliwal R, Reilley J, Alavi A (1989) In vitro and in vivo evaluation of [123I]IBZM:a potential CNS D-2 dopamine receptor imaging agent. J Nucl Med 30:88–92

    PubMed  Google Scholar 

  • Kung HF, Frederick D, Kim HJ, McElgin W, Kung MP, Mu M, Mozley DP, Vessotskie JM, Stevenson AD, Kushner SA, Zhuang ZP (1996) In vivo SPECT imaging of 5-HT1A receptors with [123I] p-MPPI in nonhuman primates. Synapse 24:273–281

    PubMed  Google Scholar 

  • Kung HF, Kung MP, Choi SR (2003) Radiopharmaceuticals for single-photon emission computed tomography brain imaging. Semin Nucl Med 33:2–13

    PubMed  Google Scholar 

  • Labaree DC, Brown TJ, Hoyte RM, Hochberg RB (1997) 7α-iodine-125-iodo-5α-dihydrotestosterone: a radiolabeled ligand for the androgen receptor. J Nucl Med 38:402–409

    PubMed  Google Scholar 

  • Labaree DC, Hoyte RM, Nazareth LV, Weigel NL, Hochberg RB (1999) 7α-Iodo and 7α-fluoro steroids as androgen receptor-mediated imaging agents. J Med Chem 42:2021–2034

    PubMed  Google Scholar 

  • Landel CC, Potthoff SJ, Nardulli AM, Kushner PJ, Greene GL (1997) Estrogen receptor accessory proteins augment receptor–DNA interaction and DNA bending. J Steroid Biochem Mol Biol 63:59–73

    PubMed  Google Scholar 

  • Langer O, Halldin C, Dolle F, Swahn CG, Olsson H, Karlsson P, Hall H, Sandell J, Lundkvist C, Vaufrey F, Loc’h C, Crouzel C, Maziere B, Farde L (1999) Carbon-11 epidepride: a suitable radioligand for PET investigation of striatal and extrastriatal dopamine D2 receptors. Nucl Med Biol 26:509–518

    PubMed  Google Scholar 

  • Larson SM, Morris M, Gunther I, Beattie B, Humm JL, Akhurst TA, Finn RD, Erdi Y, Pentlow K, Dyke J, Squire O, Bornmann W, McCarthy T, Welch M, Scher H (2004) Tumor localization of 16β-18F-fluoro-5α-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45:366–373

    PubMed  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    PubMed  Google Scholar 

  • Law MP, Osman S, Pike VW, Davenport RJ, Cunningham VJ, Rimoldi O, Rhodes CG, Giardinà D, Camici PG (2000) Evaluation of [11C]GB67, a novel radioligand for imaging myocardial α1-adrenoceptors with positron emission tomography. Eur J Nucl Med 27:7–17

    PubMed  Google Scholar 

  • Le Guludec D, Delforge J, Syrota A, Desruennes M, Valette H, Gandjbakhch I, Merlet P (1994) In vivo quantification of myocardial muscarinic receptors in heart transplant patients. Circulation 90:172–178

    PubMed  Google Scholar 

  • Le Guludec D, Cohen-Solal A, Delforge J, Delahaye N, Syrota A, Merlet P (1997) increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study. Circulation 96:3416–3422

    PubMed  Google Scholar 

  • Leamon CP, Low PS (1991) Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci U S A 88:5572–5576

    PubMed  Google Scholar 

  • Leamon CP, Reddy JA (2004) Folate-targeted chemotherapy. Adv Drug Deliv Rev 56:1127–1141

    PubMed  Google Scholar 

  • Leamon CP, Parker MA, Vlahov IR, Xu LC, Reddy JA, Vetzel M, Douglas N (2002) synthesis and biological evaluation of EC20: a new folate-derived, 99 mTc-based radiopharmaceutical. Bioconjugate Chem 13:1200–1210

    Google Scholar 

  • Lefroy DC, De Silva R, Choudhury L, Uren NG, Crake T, Rhodes CG, Lammertsma AA, Boyd H, Patsalos PN, Nihoyannopoulos P, Oakley CM, Jones T, Camici PG (1993) Diffuse reduction of myocardial β-adrenoceptors in hypertrophic cardiomyopathy:a study with positron emission tomography. J Am Coll Cardiol 22:1653–1660

    PubMed  Google Scholar 

  • Lemaire C, Cantineau R, Guillaume M, Plenevaux A, Christiaens L (1991) Fluorine-18-altanserin: a radioligand for the study of serotonin receptors with PET: radiolabeling and in vivo biologic behavior in rats. J Nucl Med 32:2266–2272

    PubMed  Google Scholar 

  • Leon A, Rey A, Mallo L, Pirmettis I, Papadopoulos M, Leon E, Pagano M, Manta E, Incerti M, Raptopoulou C (2002) Novel mixed ligand technetium complexes as 5-HT1A receptor imaging agents. Nucl Med Biol 29:217–226

    PubMed  Google Scholar 

  • Lever JR, Scheffel UA, Stathis M, Musachio JL, Wagner HN Jr (1990) In vitro and in vivo binding of (E)- and (Z)-N-(iodoallyl)spiperone to dopamine D2 and serotonin 5-HT2 neuroreceptors. Life Sci 46:1967–1976

    PubMed  Google Scholar 

  • Li Q, Ma L, Innis RB, Seneca N, Ichise M, Huang H, Laruelle M, Murphy DL (2004) Pharmacological and genetic characterization of two selective serotonin transporter ligands: 2-[2-(dimethylaminomethylphenylthio)]-5–fluoromethylphenylamine (AFM) and 3-amino-4-[2-(dimethylaminomethyl-phenylthio)]benzonitrile (DASB). J Pharmacol Exp Ther 308: 481–486

    PubMed  Google Scholar 

  • Linden HM, Stekhova SA, Link JM, Gralow JR, Livingston RB, Ellis GK, Petra PH, Peterson LM, Schubert EK, Dunnwald LK, Krohn KA, Mankoff DA (2006) quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 24:2793–2799

    PubMed  Google Scholar 

  • Lingford HA (2005) Human brain imaging and substance abuse. Curr Opin Pharmacol 5:42–46

    Google Scholar 

  • Liu A, Dence CS, Welch MJ, Katzenellenbogen JA (1992) Fluorine-18-labeled androgens: radiochemical synthesis and tissue distribution studies on six fluorine-substituted androgens, potential imaging agents for prostatic cancer. J Nucl Med 33:724–734

    PubMed  Google Scholar 

  • Liu AJ, Katzenellenbogen JA, VanBrocklin HF, Mathias CJ, Welch MJ (1991) 20-[18F]fluoromibolerone, a positron-emitting radiotracer for androgen receptors: synthesis and tissue distribution studies. J Nucl Med 32:81–88

    PubMed  Google Scholar 

  • Liu M, Xu W, Xu Lj, Zhong Gr, Chen Sl, Lu Wy (2005) Synthesis and biological evaluation of diethylenetriamine pentaacetic acid-polyethylene glycol-folate: a new folate-derived, 99 mTc-based radiopharmaceutical. Bioconjugate Chem 16:1126–1132

    Google Scholar 

  • Loc’h C, Halldin C, Bottlaender M, Swahn C-G, Moresco R–M, Maziere M, Farde L, Maziere B (1996) Preparation of [76Br]FLB 457 and [76Br]FLB 463 for examination of striatal and extrastriatal dopamine D-2 receptors with PET. Nucl Med Biol 23:813–819

    Google Scholar 

  • Lundkvist C, Halldin C, Ginovart N, Nyberg S, Swahn C-G, Carr AA, Brunner F, Farde L (1996) [11C]MDL 100907, a radioligand for selective imaging of 5-HT2A receptors with positron emission tomography. Life Sci 58:187–192

    Google Scholar 

  • Luo H, Hasan A, Sood V, McRee RC, Zeeberg B, Reba RC, McPherson DW, Knapp FF (1996) Evaluation of 1-azabicyclo[2.2.2]oct-3-yl α-fluoroalkyl-α-hydroxy-α-phenylacetates as potential ligands for the study of muscarinic receptor density by positron emission tomography. Nucl Med Biol 23:267–276

    PubMed  Google Scholar 

  • Luyt LG, Bigott HM, Welch MJ, Katzenellenbogen JA (2003) 7α- and 17α-substituted estrogens containing tridentate tricarbonyl rhenium/technetium complexes: synthesis of estrogen receptor imaging agents and evaluation using microPET with technetium-94 m. Bioorg Med Chem 11:4977–4989

    PubMed  Google Scholar 

  • Mach RH, Huang Y, Buchheimer N, Kuhner R, Wu L, Morton TE, Wang LM, Ehrenkaufer RL, Wallen CA, Wheeler KT (2001) [18F]N-4-Fluorobenzyl-4-(3–bromophenyl) acetamide for imaging the sigma receptor status of tumors:comparison with [18F]FDG and [125I]IUDR. Nucl Med Biol 28:451–458

    PubMed  Google Scholar 

  • Machulla H-J, Heinz A (2005) Radioligands for brain imaging of the κ-opioid system. J Nucl Med 46:386–387

    PubMed  Google Scholar 

  • Mankoff DA, Dehdashti F, Shields AF (2000) Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia 2:71–88

    PubMed  Google Scholar 

  • Marek K, Jennings D, Seibyl J (2003) Imaging the dopamine system to assess disease-modifying drugs: studies comparing dopamine agonists and levodopa. Neurology 61:S43–S48

    PubMed  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    PubMed  Google Scholar 

  • Matarrese M, Moresco RM, Romeo G, Turolla EA, Simonelli P, Todde S, Belloli S, Carpinelli A, Magni F, Russo F, Galli Kienle M, Fazio F (2002) [11C]RN5: a new agent for the in vivo imaging of myocardial α1-adrenoceptors. Eur J Pharmacol 453:231–238

    PubMed  Google Scholar 

  • Mathias CJ, Hubers D, Low PS, Green MA (2000) Synthesis of [99mTc]DTPA-folate and its evaluation as a folate–receptor–targeted radiopharmaceutical. Bioconjugate Chem 11:253–257

    Google Scholar 

  • Mathias CJ, Lewis MR, Reichert DE, Laforest R, Sharp TL, Lewis JS, Yang Z–F, Waters DJ, Snyder PW, Low PS, Welch MJ, Green MA (2003) Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nucl Med Biol 30:725–731

    Google Scholar 

  • Mathis CA, Simpson NR, Mahmood K, Kinahan PE, Mintun MA (1994) [11C]WAY 100635: a radioligand for imaging 5-HT1A receptors with positron emission tomography. Life Sci 55: 403–407

    Google Scholar 

  • Matsumura K, Uno Y, Scheffel U, Wilson AA, Dannals RF, Wagner HN Jr (1991) In vitro and in vivo characterization of 4-[125I]iododexetimide binding to muscarinic cholinergic receptors in the rat heart. J Nucl Med 32:76–80

    PubMed  Google Scholar 

  • Mazière B, Halldin C (2004) PET tracers for brain scanning. In: Ell PJ, Gambhir SS (eds) nuclear medicine in clinical diagnosis and treatment. Churchill Livingstone, Edinburgh, pp 1295–1329

    Google Scholar 

  • Maziere M, Comar D, Godot JM, Collard P, Cepeda C, Naquet R (1981) In vivo characterization of myocardium muscarinic receptors by positron emission tomography. Life Sci 29:2391–2397

    PubMed  Google Scholar 

  • Maziere M, Hantraye P, Prenant C, Sastre J, Comar D (1984) Synthesis of ethyl 8-fluoro-5,6-dihydro-5-[11C]methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate (Ro 15-1788-11C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography. Int J Appl Radiat Isot 35:973–976

    PubMed  Google Scholar 

  • Mazzi U (2006) Technetium, rhenium and other metals in chemistry and nuclear medicine. SGEditoriali, Padova

    Google Scholar 

  • McCann UD, Szabo Z, Seckin E, Rosenblatt P, Mathews WB, Ravert HT, Dannals RF, Ricaurte GA (2005) Quantitative PET studies of the serotonin transporter in MDMA Users and controls using [11C]McN5652 and [11C]DASB. Neuropsychopharmacology 30:1741–1750

    PubMed  Google Scholar 

  • McLeod DG (1993) Antiandrogenic drugs. Cancer 71:1046–1049

    PubMed  Google Scholar 

  • McPherson DW, Greenbaum M, Luo H, Beets AL, Knapp FF (2000) Evaluation of Z-(R,R)-IQNP for the potential imaging of m2 mAChR rich regions of the brain and heart. Life Sci 66:885–896

    PubMed  Google Scholar 

  • Merlet P, Delforge J, Syrota A, Angevin E, Maziere B, Crouzel C, Valette H, Loisance D, Castaigne A, Rande JL (1993) Positron emission tomography with 11C CGP-12177 to assess β-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 87: 1169–1178

    PubMed  Google Scholar 

  • Mertens J, Terriere D, Sipido V, Gommeren W, Janssen PMF, Leysen JE (1994) Radiosynthesis of a new radioiodinated ligand for serotonin-5HT2-receptors, a promising tracer for γ-emission tomography. J Labelled Comp Radiopharm 34:795–806

    Google Scholar 

  • Mitterhauser M, Wadsak W, Wabnegger L, Mien L–K, Togel S, Langer O, Sieghart W, Viernstein H, Kletter K, Dudczak R (2004) Biological evaluation of 2-[18F]fluoroflumazenil ([18F]FFMZ), a potential GABA receptor ligand for PET. Nucl Med Biol 31:291–295

    Google Scholar 

  • Moerlein SM, Perlmutter JS (1992) Binding of 5-(2-[18F]fluoroethyl)flumazenil to central benzodiazepines receptors measured in living baboon by positron emission tomography. Eur J Pharmacol 218:109–115

    PubMed  Google Scholar 

  • Moerlein SM, Parkinson D, Welch MJ (1990) Radiosynthesis of high effective specific-activity [123I]SCH 23982 for dopamine D-1 receptor-based SPECT imaging. Int J Rad Appl Instrum [A] 41:381–385

    Google Scholar 

  • Moerlein SM, Perlmutter JS, Markham J, Welch MJ (1997) In vivo kinetics of [18F](N-methyl)benperidol: a novel pet tracer for assessment of dopaminergic D2-like receptor binding. J Cereb Blood Flow Metab 17:833–845

    PubMed  Google Scholar 

  • Moresco RM, Matarrese M, Soloviev D, Simonelli P, Rigamonti M, Gobbo C, Todde S, Carpinelli A, Galli Kienle M, Fazio F (2000) Synthesis and in vivo evaluation of [11C]ICI 118551 as a putative subtype selective β2-adrenergic radioligand. Int J Pharm 204:101–109

    PubMed  Google Scholar 

  • Mori T, Kasamatsu S, Mosdzianowski C, Welch MJ, Yonekura Y, Fujibayashi Y (2006) Automatic synthesis of 16α-[18F]fluoro-17β-estradiol using a cassette-type [18F]fluorodeoxyglucose synthesizer. Nucl Med Biol 33:281–286

    PubMed  Google Scholar 

  • Mortimer JE, Dehdashti F, Siegel BA, Katzenellenbogen JA, Fracasso P, Welch MJ (1996) Positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose and 16α-[18F]fluoro-17β-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin Cancer Res 2:933–939

    PubMed  Google Scholar 

  • Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ (2001) metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19:2797–2803

    PubMed  Google Scholar 

  • Mukherjee J, Narayanan TK, Christian BT, Shi B, Dunigan KA, Mantil J (2000) In vitro and in vivo evaluation of the binding of the dopamine D2 receptor agonist 11C-(R,S)-5-hydroxy-2-(di-n-propylamino)tetralin in rodents and nonhuman primate. Synapse 37:64–70

    PubMed  Google Scholar 

  • Mukherjee J, Narayanan TK, Christian BT, Shi B, Yang ZY (2004a) Binding characteristics of high-affinity dopamine D2∕D3 receptor agonists, 11C-PPHT and 11C-ZYY-339 in rodents and imaging in non-human primates by PET. Synapse 54:83–91

    PubMed  Google Scholar 

  • Mukherjee J, Shi B, Christian BT, Chattopadhyay S, Narayanan TK (2004b) 11C-Fallypride: radiosynthesis and preliminary evaluation of a novel dopamine D2∕D3 receptor PET radiotracer in non-human primate brain. Bioorg Med Chem 12:95–102

    PubMed  Google Scholar 

  • Mull ES, Sattigeri VJ, Rodriguez AL, Katzenellenbogen JA (2002) Aryl cyclopentadienyl tricarbonyl rhenium complexes: novel ligands for the estrogen receptor with potential use as estrogen radiopharmaceuticals. Bioorg Med Chem 10:1381–1398

    PubMed  Google Scholar 

  • Müller C, Hohn A, Schubiger AP, Schibli R (2006) Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumour targeting. Eur J Nucl Med Mol Imaging 33:1007–1016

    PubMed  Google Scholar 

  • Murali D, Flores LG, Roberts AD, Nickles RJ, DeJesus OT (2003) Aromatic -amino acid decarboxylase (AAAD) inhibitors as carcinoid tumor-imaging agents: synthesis of 18F-labeled α-fluoromethyl-6-fluoro-m-tyrosine (FM-6-FmT). Appl Radiat Isot 59:237–243

    PubMed  Google Scholar 

  • Murphy LC, Watson PH (2006) Is oestrogen receptor-β a predictor of endocrine therapy responsiveness in human breast cancer? Endocr Relat Cancer 13:327–334

    PubMed  Google Scholar 

  • Nakatsuka I, Saji H, Shiba K, Shimizu H, Okuno M, Yoshitake A, Yokoyama A (1987) In vitro evaluation of radioiodinated butyrophenones as radiotracer for dopamine receptor study. Life Sci 41:1989–1997

    PubMed  Google Scholar 

  • Nicolaas P, Verhoeff LG (1999) Radiotracer imaging of dopaminergic transmission in neuropsychiatric disorders. Psychopharmacology 147:217–249

    Google Scholar 

  • Nijkamp FP, Henricks PA (1990) Receptors in airway disease. β-adrenoceptors in lung inflammation. Am Rev Respir Dis 141:S145–S150

    PubMed  Google Scholar 

  • Nutt DJ, Malizia AL (2001) New insights into the role of the GABAA-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry 179:390–396

    PubMed  Google Scholar 

  • Okarvi SM, Jammaz IA (2006) Preparation and in vitro and in vivo evaluation of technetium-99m-labeled folate and methotrexate conjugates as tumor imaging agents. Cancer Biother Radiopharm 21:49–60

    PubMed  Google Scholar 

  • Osman S, Lundkvist C, Pike VW, Halldin C, McCarron JA, Swahn C-G, Farde L, Ginovart N, Luthra SK, Gunn RN (1998) characterisation of the appearance of radioactive metabolites in monkey and human plasma from the 5-HT1A receptor radioligand, [carbonyl-11C]WAY-100635–Explanation of high signal contrast in PET and an aid to biomathematical modelling. Nucl Med Biol 25:215–223

    PubMed  Google Scholar 

  • Owens MJ (1996/1997) Molecular and cellular mechanisms of antidepressant drugs. Depress Anxiety 4:153–159

    Google Scholar 

  • Palmer AM, Francis PT, Benton JS, Sims NR, Mann DM, Neary D, Snowden JS, Bowen DM (1987) Presynaptic serotonergic dysfunction in patients with Alzheimer’s disease. J Neurochem 48:8–15

    PubMed  Google Scholar 

  • Palmieri C, Cheng GJ, Saji S, Zelada–Hedman M, Warri A, Weihua Z, Van Noorden S, Wahlstrom T, Coombes RC, Warner M, Gustafsson JA (2002) Estrogen receptor beta in breast cancer. Endocr Relat Cancer 9:1–13

    PubMed  Google Scholar 

  • Panwar P, Shrivastava V, Tandon V, Mishra P, Chuttani K, Sharma RK, Chandra R, Mishra AK (2004) 99mTc-tetraethylenepentamine-folate — a new 99mTc-based folate derivative for the detection of folate receptor positive tumors: synthesis and biological evaluation. Cancer Biol Ther 3:995–1001

    PubMed  Google Scholar 

  • Parent EE, Dence CS, Sharp TL, Welch MJ, Katzenellenbogen JA (2006a) Synthesis and biological evaluation of a fluorine-18-labeled nonsteroidal androgen receptor antagonist, N-(3-[18F]fluoro-4-nitronaphthyl)-cis-5-norbornene-endo-2,3-dicarboxylic imide. Nucl Med Biol 33:615–624

    PubMed  Google Scholar 

  • Parent EE, Jenks C, Sharp T, Welch MJ, Katzenellenbogen JA (2006b) Synthesis and biological evaluation of a nonsteroidal bromine-76-labeled androgen receptor ligand 3-[76Br]bromo-hydroxyflutamide. Nucl Med Biol 33:705–713

    PubMed  Google Scholar 

  • Passchier J, van Waarde A (2001) Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system. Eur J Nucl Med 28:119–129

    Google Scholar 

  • Peremans K, Audenaert K, Hoybergs Y, Otte A, Goethals I, Gielen I, Blankaert P, Vervaet M, Heeringen Cv, Dierckx R (2005) The effect of citalopram hydrobromide on 5-HT2A receptors in the impulsive-aggressive dog, as measured with 123I-5-I-R91150 SPECT. Eur J Nucl Med Mol Imaging 32:708–716

    PubMed  Google Scholar 

  • Piccini P, Whone A (2004) Functional brain imaging in the differential diagnosis of Parkinson’s disease. Lancet Neurol 3:284–290

    PubMed  Google Scholar 

  • Pike VW, McCarron JA, Lammertsma AA, Osman S, Hume SP, Sargent PA, Bench CJ, Cliffe IA, Fletcher A, Grasby PM (1996) Exquisite delineation of 5-HT1A receptors in human brain with PET and [carbonyl-11C] WAY-100635. Eur J Pharmacol 301:R5–R7

    PubMed  Google Scholar 

  • Pike VW, Law MP, Osman S, Davenport RJ, Rimoldi O, Giardina D, Camici PG (2000) Selection, design and evaluation of new radioligands for PET studies of cardiac adrenoceptors. Pharm Acta Helv 74:191–200

    PubMed  Google Scholar 

  • Pleis JR, Lethbridge CM (2006) Summary health statistics for U.S. adults: National Health Interview Survey, 2005. Vital Health Stat 10:1–153

    Google Scholar 

  • Plisson C, McConathy J, Martarello L, Malveaux EJ, Camp VM, Williams L, Votaw JR, Goodman MM (2004) Synthesis, radiosynthesis, and biological evaluation of carbon-11 and iodine-123 labeled 2-carbomethoxy-3-[4-((Z)-2-haloethenyl)phenyl]tropanes: candidate radioligands for in vivo imaging of the serotonin transporter. J Med Chem 47:1122–1135

    PubMed  Google Scholar 

  • Pomper MG, Katzenellenbogen JA, Welch MJ, Brodack JW, Mathias CJ (1988) 21-[18F]fluoro-16α-ethyl-19-norprogesterone: synthesis and target tissue selective uptake of a progestin receptor based radiotracer for positron emission tomography. J Med Chem 31:1360–1363

    PubMed  Google Scholar 

  • Qing F, Rahman SU, Rhodes CG, Hayes MJ, Sriskandan S, Ind PW, Jones T, Hughes JM (1997) Pulmonary and cardiac β-adrenoceptor density in vivo in asthmatic subjects. Am J Respir Crit Care Med 155:1130–1134

    PubMed  Google Scholar 

  • Quinlivan M, Mattner F, Papazian V, Zhou J, Katsifis A, Emond P, Chalon S, Kozikowski A, Guilloteau D, Kassiou M (2003) Synthesis and evaluation of iodine-123 labelled tricyclic tropanes as radioligands for the serotonin transporter. Nucl Med Biol 30:741–746

    PubMed  Google Scholar 

  • Quirion R, Bowen WD, Itzhak Y, Junien JL, Musachio J, Rothman RB, Tsung-Ping S, Tam SW, Taylor DP (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13:85–86

    PubMed  Google Scholar 

  • Ravert HT, Scheffel U, Mathews WB, Musachio JL, Dannals RF (2002) [11C]–GR89696, a potent kappa opiate receptor radioligand; in vivo binding of the R and S enantiomers. Nucl Med Biol 29:47–53

    PubMed  Google Scholar 

  • Reddy JA, Xu LC, Parker N, Vetzel M, Leamon CP (2004) Preclinical evaluation of 99mTc-EC20 for imaging folate receptor-positive tumors. J Nucl Med 45:857–866

    PubMed  Google Scholar 

  • Reddy JA, Allagadda VM, Leamon CP (2005) Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr Pharm Biotechnol 6:131–150

    PubMed  Google Scholar 

  • Rijks LJ, Boer GJ, Endert E, de Bruin K, van den Bos JC, van Doremalen PA, Schoonen WG, Janssen AG, van Royen EA (1996) The stereoisomers of 17α-[123I]iodovinyloestradiol and its 11α-methoxy derivative evaluated for their oestrogen receptor binding in human MCF-7 cells and rat uterus, and their distribution in immature rats. Eur J Nucl Med Mol Imaging 23:295–307

    Google Scholar 

  • Rijks LJM, van den Bos JC, van Doremalen PAPM, Boer GJ, de Bruin K, Janssen AGM, van Royen EA (1998) New iodinated progestins as potential ligands for progesterone receptor imaging in breast cancer. Part 2: In vivo pharmacological characterization. Nucl Med Biol 25:791–798

    PubMed  Google Scholar 

  • Rossin R, Pan D, Qi K, Turner JL, Sun X, Wooley KL, Welch MJ (2005) 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med 46:1210–1218

    PubMed  Google Scholar 

  • Rowland DJ, Tu Z, Xu J, Ponde D, Mach RH, Welch MJ (2006) Synthesis and in vivo evaluation of 2 high-affinity 76Br-labeled σ2-receptor ligands. J Nucl Med 47:1041–1048

    PubMed  Google Scholar 

  • Ryzhikov NN, Seneca N, Krasikova RN, Gomzina NA, Shchukin E, Fedorova OS, Vassiliev DA, Gulyas B, Hall H, Savic I, Halldin C (2005) Preparation of highly specific radioactivity [18F]flumazenil and its evaluation in cynomolgus monkey by positron emission tomography. Nucl Med Biol 32:109–116

    PubMed  Google Scholar 

  • Saigal N, Pichika R, Easwaramoorthy B, Collins D, Christian BT, Shi B, Narayanan TK, Potkin SG, Mukherjee J (2006) Synthesis and biologic evaluation of a novel serotonin 5-HT1A receptor radioligand, 18F-labeled mefway, in rodents and imaging by PET in a nonhuman primate. J Nucl Med 47:1697–1706

    PubMed  Google Scholar 

  • Samnick S, Remy N, Ametamey S, Bader JB, Brandau W, Kirsch C-M (1998) 123I-MSP and F[11C]MSP: new selective 5-HT2A receptor radiopharmaceuticals for in vivo studies of neuronal 5-HT2 serotonin receptors. Synthesis, in vitro binding study with unlabelled analogues and preliminary in vivo evaluation in mice. Life Sci 63:2001–2013

    PubMed  Google Scholar 

  • Sanchez-Pernaute R, Brownell AL, Isacson O (2002) functional imaging of the dopamine system: in vivo evaluation of dopamine deficiency and restoration. Neurotoxicology 23:469–478

    PubMed  Google Scholar 

  • Santos AF, Huang H, Tindall DJ (2004) The androgen receptor: a potential target for therapy of prostate cancer. Steroids 69:79–85

    PubMed  Google Scholar 

  • Schafers MA, Wichter T, Schafers KP, Rahman S, Rhodes CG, Lammertsma AA, Lerch H, Knickmeier M, Hermansen F, Schober O, Camici PG, Breithardt G (2001) Pulmonary β-adrenoceptor density in arrhythmogenic right ventricular cardiomyopathy and idiopathic tachycardia. Basic Res Cardiol 96:91–97

    PubMed  Google Scholar 

  • Schins A, Van Kroonenburgh M, Van Laere K, D’Haenen H, Lousberg R, Crijns H, Eersels J, Honig A (2005) Increased cerebral serotonin-2A receptor binding in depressed patients with myocardial infarction. Psychiatry Res 139:155–163

    PubMed  Google Scholar 

  • Schirrmacher E, Schirrmacher R, Thews O, Dillenburg W, Helisch A, Wessler I, Buhl R, Hohnemann S, Buchholz H–G, Bartenstein P, Machulla H-J, Rosch F (2003) Synthesis and preliminary evaluation of (R,R)(S,S) 5-(2-(2-[4-(2-[18F]fluoroethoxy)phenyl]-1-methylethylamino)-1-hydroxyethyl)-benzene-1,3-diol ([18F]FEFE) for the in vivo visualisation and quantification of the β2-adrenergic receptor status in lung. Bioorg Med Chem Lett 13: 2687–2692

    Google Scholar 

  • Seimbille Y, Rousseau J, Benard F, Morin C, Ali H, Avvakumov G, Hammond GL, van Lier JE (2002) 18F-labeled difluoroestradiols: preparation and preclinical evaluation as estrogen receptor-binding radiopharmaceuticals. Steroids 67:765–775

    PubMed  Google Scholar 

  • Seimbille Y, Benard F, Rousseau J, Pepin E, Aliaga A, Tessier G, van Lier JE (2004) Impact on estrogen receptor binding and target tissue uptake of [18F]fluorine substitution at the 16α-position of fulvestrant (faslodex; ICI 182,780). Nucl Med Biol 31:691–698

    PubMed  Google Scholar 

  • Seo JW, Comninos JS, Chi DY, Kim DW, Carlson KE, Katzenellenbogen JA (2006) Fluorine-substituted cyclofenil derivatives as estrogen receptor ligands: synthesis and structure-affinity relationship study of potential positron emission tomography agents for imaging estrogen receptors in breast cancer. J Med Chem 49:2496–2511

    PubMed  Google Scholar 

  • Shiue CY, Welch MJ (2004) Update on PET radiopharmaceuticals: life beyond fluorodeoxyglucose. Radiol Clin North Am 42:1033–1053

    PubMed  Google Scholar 

  • Shiue CY, Bai LQ, Teng RR, Arnett CD, Dewey SL, Wolf AP, McPherson DW, Fowler JS, Logan J, Holland MJ (1991) A comparison of the brain uptake of N-(cyclopropyl[11C]methyl)norbuprenorphine ([11C]buprenorphine) and N-(cyclopropyl[11C]methyl)nordiprenorphine ([11C]diprenorphine) in baboon using PET. Int J Rad Appl Instrum B 18:281–288

    PubMed  Google Scholar 

  • Shiue CY, Shiue GG, Zhang SX, Wilder S, Greenberg JH, Benard F, Wortman JA, Alavi AA (1997) N-(N-Benzylpiperidin-4-yl)-2-[18F]fluorobenzamide: a potential ligand for PET imaging of σ receptors. Nucl Med Biol 24:671–676

    PubMed  Google Scholar 

  • Shiue CY, Pleus RC, Shiue GG, Rysavy JA, Sunderland JJ, Cornish KG, Young SD, Bylund DB (1998) Synthesis and biological evaluation of [11C]MK-912 as an α2-adrenergic receptor radioligand for PET studies. Nucl Med Biol 25:127–133

    PubMed  Google Scholar 

  • Sibley DR, Monsma JFJ (1992) Molecular biology of dopamine receptors. Trends Pharmacol Sci 13:61–69

    PubMed  Google Scholar 

  • Sibley DR, De Lean A, Creese I (1982) Anterior pituitary dopamine receptors. Demonstration of interconvertible high and low affinity states of the D-2 dopamine receptor. J Biol Chem 257:6351–6361

    PubMed  Google Scholar 

  • Siegel BA, Dehdashti F, Mutch DG, Podoloff DA, Wendt R, Sutton GP, Burt RW, Ellis PR, Mathias CJ, Green MA, Gershenson DM (2003) Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J Nucl Med 44:700–707

    PubMed  Google Scholar 

  • Skaddan MB, Wust FR, Jonson S, Syhre R, Welch MJ, Spies H, Katzenellenbogen JA (2000) Radiochemical synthesis and tissue distribution of Tc-99m-labeled 7α-substituted estradiol complexes. Nucl Med Biol 27:269–278

    PubMed  Google Scholar 

  • Small EJ, Halabi S, Dawson NA, Stadler WM, Rini BI, Picus J, Gable P, Torti FM, Kaplan E, Vogelzang NJ (2004) antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients:a phase iii trial (CALGB 9583). J Clin Oncol 22:1025–1033

    PubMed  Google Scholar 

  • Smith JS, Zubieta JK, Price JC, Flesher JE, Madar I, Lever JR, Kinter CM, Dannals RF, Frost JJ (1999) Quantification of δ-opioid receptors in human brain with N1-([11C]Methyl) naltrindole and positron emission tomography. J Cereb Blood Flow Metab 19:956–966

    PubMed  Google Scholar 

  • Sobrio F, Amokhtari M, Gourand F, Dhilly M, Dauphin F, Barre L (2000) Radiosynthesis of [18F]Lu29-024: a potential PET ligand for brain imaging of the serotonergic 5-HT2 receptor. Bioorg Med Chem 8:2511–2518

    PubMed  Google Scholar 

  • Soloviev DV, Matarrese M, Moresco RM, Todde S, Bonasera TA, Sudati F, Simonelli P, Magni F, Colombo D, Carpinelli A, Galli Kienle M, Fazio F (2001) Asymmetric synthesis and preliminary evaluation of (R)- and (S)-[11C]bisoprolol, a putative β1-selective adrenoceptor radioligand. Neurochem Int 38:169–180

    PubMed  Google Scholar 

  • Sprenger T, Berthele A, Platzer S, Boecker H, Tolle TR (2005) What to learn from in vivo opioidergic brain imaging? Eur J Pain 9:117–121

    PubMed  Google Scholar 

  • Stamatakis EA, Hetherington MM (2003) Neuroimaging in eating disorders. Nutr Neurosci 6: 325–334

    PubMed  Google Scholar 

  • Starke K (1981) α-Adrenoceptor subclassification. Rev Physiol Biochem Pharmacol 88: 199–236

    PubMed  Google Scholar 

  • Stockmeier CA (2003) Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res 37: 357–373

    PubMed  Google Scholar 

  • Sucharov CC (2007) β-adrenergic pathways in human heart failure. Expert Rev Cardiovasc Ther 5:119–124

    PubMed  Google Scholar 

  • Suehiro M, Dannals RF, Scheffel U, Stathis M, Wilson AA, Ravert HT, Villemagne VL, Sanchez-Roa PM, Wagner HN Jr, (1990) In vivo labeling of the dopamine D2 receptor with N-11C-methyl-benperidol. J Nucl Med 31:2015–2021

    PubMed  Google Scholar 

  • Sun C, Sze R, Zhang M (2006) Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A 78:550–557

    PubMed  Google Scholar 

  • Takahashi N, Yang DJ, Kohanim S, Oh CS, Yu DF, Azhdarinia A, Kurihara H, Zhang X, Chang JY, Edmund KE (2008) Targeted functional imaging of estrogen receptors with 99mTc-GAP-EDL. Eur J Nucl Med Mol Imaging (in press)

    Google Scholar 

  • Takamatsu S, Furukawa T, Mori T, Yonekura Y, Fujibayashi Y (2005) Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene. Nucl Med Biol 32:821–829

    PubMed  Google Scholar 

  • Talbot PS, Laruelle M (2002) The role of in vivo molecular imaging with PET and SPECT in the elucidation of psychiatric drug action and new drug development. Eur Neuropsychopharmacol 12:503–511

    PubMed  Google Scholar 

  • Talbot PS, Narendran R, Butelman ER, Huang Y, Ngo K, Slifstein M, Martinez D, Laruelle M, Hwang DR (2005) 11C-GR103545, a radiotracer for imaging κ-opioid receptors in vivo with PET: synthesis and evaluation in baboons. J Nucl Med 46:484–494

    PubMed  Google Scholar 

  • Tan PZ, Baldwin RM, Van Dyck CH, Al-Tikriti M, Roth B, Khan N, Charney DS, Innis RB (1999) Characterization of radioactive metabolites of 5-HT2A receptor PET ligand [18F]altanserin in human and rodent. Nucl Med Biol 26:601–608

    PubMed  Google Scholar 

  • Tewson TJ, Stekhova S, Kinsey B, Chen L, Wiens L, Barber R (1999) Synthesis and biodistribution of R- and S-isomers of [18F]-fluoropropranolol, a lipophilic ligand for the β-adrenergic receptor. Nucl Med Biol 26:891–896

    PubMed  Google Scholar 

  • Tipre DN, Zoghbi SS, Liow JS, Green MV, Seidel J, Ichise M, Innis RB, Pike VW (2006) PET Imaging of brain 5-HT1A receptors in rat in vivo with 18F-FCWAY and improvement by successful inhibition of radioligand defluorination with miconazole. J Nucl Med 47:345–353

    PubMed  Google Scholar 

  • Trump DP, Mathias CJ, Yang Z, Low PS, Marmion M, Green MA (2002) Synthesis and evaluation of 99mTc(CO)3-DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nucl Med Biol 29:569–573

    PubMed  Google Scholar 

  • Tsoukalas C, Pirmettis I, Patsis G, Pelecanou M, Bodo K, Raptopoulou CP, Terzis A, Papadopoulos M, Chiotellis E (2003) Novel oxorhenium and oxotechnetium MO(NS)(S)2 complexes in the development of 5-HT1A receptor imaging agents. J Inorg Biochem 93: 213–220

    PubMed  Google Scholar 

  • Tu Z, Dence CS, Ponde DE, Jones L, Wheeler KT, Welch MJ, Mach RH (2005) Carbon-11 labeled σ2 receptor ligands for imaging breast cancer. Nucl Med Biol 32:423–430

    PubMed  Google Scholar 

  • Turner MR, Cagnin A, Turkheimer FE, Miller CCJ, Shaw CE, Brooks DJ, Leigh PN, Banati RB (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15:601–609

    PubMed  Google Scholar 

  • Tyacke RJ, Robinson ESJ, Schnabel R, Lewis JW, Husbands SM, Nutt DJ, Hudson AL (2002) N1-fluoroethyl-naltrindole (BU97001) and N1-fluoroethyl-(14-formylamino)-naltrindole (BU97018) potential δ-opioid receptor PET ligands. Nucl Med Biol 29:455–462

    PubMed  Google Scholar 

  • Ueki J, Rhodes CJ, Hughes JM, De–Silva R, Lefroy DC, Ind PW, Qing F, Brady F, Luthra SK, Steel CJ (1993) In vivo quantification of pulmonary β-adrenoceptor density in humans with (S)-[11C]CGP–12177 and PET. J Appl Physiol 75:559–565

    Google Scholar 

  • Valette H, Dolle F, Guenther I, Demphel S, Rasetti C, Hinnen F, Fuseau C, Crouzel C (1999) Preliminary evaluation of 2-[4-[3-(tert-Butylamino)-2-hydroxypropoxy]phenyl]-3-methyl-6-methoxy-4(3H)-quinazolinone ([ + ∕−]HX-CH 44) as a selective β1-adrenoceptor ligand for PET. Nucl Med Biol 26:105–109

    PubMed  Google Scholar 

  • Valk PE, Bailey DL, Townsend DW, Maisey MN (2003) Positron emission tomography: basic science and clinical practice. Springer, London

    Google Scholar 

  • van den Bos JC, Rijks LJM, van Doremalen PAPM, de Bruin K, Janssen AGM, van Royen EA (1998) New iodinated progestins as potential ligands for progesterone receptor imaging in breast cancer. Part 1: synthesis and in vitro pharmacological characterization. Nucl Med Biol 25:781–789

    PubMed  Google Scholar 

  • Van Den Bossche B, Van de Wiele C (2004) receptor imaging in oncology by means of nuclear medicine: current status. J Clin Oncol 22:3593–3607

    Google Scholar 

  • Van der Mey M, Windhorst AD, Klok RP, Herscheid JDM, Kennis LE, Bischoff F, Bakker M, Langlois X, Heylen L, Jurzak M, Leysen JE (2006) Synthesis and biodistribution of [11C]R107474, a new radiolabeled α2-adrenoceptor antagonist. Bioorg Med Chem 14:4526–4534

    PubMed  Google Scholar 

  • van Waarde A, Visser TJ, Elsinga PH, de Jong BM, van der Mark TW, Kraan J, Ensing K, Pruim J, Willemsen ATM, Brodde O-E, Visser GM, Paans AMJ, Vaalburg W (1997) Imaging β-adrenoceptors in the human brain with (S)-l-[18F]fluorocarazolol. J Nucl Med 38:934–939

    PubMed  Google Scholar 

  • van Waarde A, Elsinga PH, Doze P, Heldoorn M, Jaeggi KA, Vaalburg W (1998) A novel β-adrenoceptor ligand for positron emission tomography: evaluation in experimental animals. Eur J Pharmacol 343:289–296

    PubMed  Google Scholar 

  • van Waarde A, Buursma AR, Hospers GAP, Kawamura K, Kobayashi T, Ishii K, Oda K, Ishiwata K, Vaalburg W, Elsinga PH (2004) Tumor imaging with 2 σ-receptor ligands, 18F-FE-SA5845 and 11C-SA4503: a feasibility study. J Nucl Med 45:1939–1945

    PubMed  Google Scholar 

  • van Waarde A, Maas B, Doze P, Slart RH, Frijlink HW, Vaalburg W, Elsinga PH (2005) positron emission tomography studies of human airways using an inhaled β-adrenoceptor antagonist, S-11C-CGP 12388. Chest 128:3020–3027

    PubMed  Google Scholar 

  • van Waarde A, Been LB, Ishiwata K, Dierckx RA, Elsinga PH (2006) early response of σ-receptor ligands and metabolic PET tracers to 3 forms of chemotherapy: an in vitro study in glioma cells. J Nucl Med 47:1538–1545

    PubMed  Google Scholar 

  • VanBrocklin HF, Blagoev M, Hoepping A, O’Neil JP, Klose M, Schubiger PA, Ametamey S (2004) A new precursor for the preparation of 6-[18F]fluoro-m-tyrosine ([18F]FMT): efficient synthesis and comparison of radiolabeling. Appl Radiat Isot 61:1289–1294

    PubMed  Google Scholar 

  • Vandecapelle M, De Vos F, Vermeirsch H, De Ley G, Audenaert K, Leysen D, Dierckx RA, Slegers G (2001) In vivo evaluation of 4-[123I]iodo-N-{2-[4-(6-trifluoromethyl-2-pyridinyl)-1-piperazinyl]ethyl}benzamide, a potential SPECT radioligand for the 5-HT1A receptor. Nucl Med Biol 28:639–643

    PubMed  Google Scholar 

  • Verhagen A, Luurtsema G, Pesser JW, de Groot TJ, Wouda S, Oosterhuis JW, Vaalburg W (1991) Preclinical evaluation of a positron emitting progestin ([18F]fluoro-16α-methyl-19-norprogesterone) for imaging progesterone receptor positive tumours with positron emission tomography. Cancer Lett 59:125–132

    PubMed  Google Scholar 

  • Verhagen A, Studeny M, Luurtsema G, Visser GM, De Goeij CCJ, Sluyser M, Nieweg OE, van der Ploeg E, Go KG, Vaalburg W (1994) Metabolism of a [18F]fluorine labeled progestin (21-[18F]fluoro-16α-ethyl-19-norprogesterone) in humans: a clue for future investigations. Nucl Med Biol 21:941–952

    PubMed  Google Scholar 

  • Versijpt J, Van Laere KJ, Dumont F, Decoo D, Vandecapelle M, Santens P, Goethals I, Audenaert K, Slegers G, Dierckx RA, Korf J (2003a) Imaging of the 5-HT2A system: age-, gender-, and Alzheimer’s disease-related findings. Neurobiol Aging 24:553–561

    PubMed  Google Scholar 

  • Versijpt JJ, Dumont F, van Laere KJ, Decoo D, Santens P, Audenaert K, Achten E, Slegers G, Dierckx RA, Korf J (2003b) Assessment of neuroinflammation and microglial activation in Alzheimer’s disease with radiolabelled PK11195 and single photon emission computed tomography. Eur Neurol 50:39–47

    PubMed  Google Scholar 

  • Vilner BJ, John CS, Bowen WD (1995) σ1 and σ2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res 55:408–413

    PubMed  Google Scholar 

  • Visser TJ, van Waarde A, Jansen TJH, Visser GM, van der Mark TW, Kraan J, Ensing K, Vaalburg W (1997a) Stereoselective synthesis and biodistribution of potent [11C]-labeled antagonists for positron emission tomography imaging of muscarinic receptors in the airways. J Med Chem 40:117–124

    PubMed  Google Scholar 

  • Visser TJ, van Waarde A, van der Mark TW, Kraan J, Elsinga PH, Pruim J, Ensing K, Jansen T, Willemsen ATM, Franssen EJF, Visser GM, Paans AMJ, Vaalburg W (1997b) Characterization of pulmonary and myocardial β–adrenoceptors with S-1-[fluorine-18]fluorocarazolol. J Nucl Med 38:169–174

    PubMed  Google Scholar 

  • Visser TJ, van Waarde A, Doze P, Elsinga PH, van der Mark TW, Kraan J, Ensing K, Vaalburg W (1998) Characterisation of β2–adrenoceptors, using the agonist [11C]formoterol and positron emission tomography. Eur J Pharmacol 361:35–41

    PubMed  Google Scholar 

  • Visser TJ, van Waarde A, van der Mark TW, Kraan J, Ensing K, Willemsen ATM, Elsinga PH, Vaalburg W (1999) Detection of muscarinic receptors in the human lung using PET. J Nucl Med 40:1270–1276

    PubMed  Google Scholar 

  • Wagner HN, Jr., Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221:1264–1266

    PubMed  Google Scholar 

  • Wagner S, Kopka K, Law MP, Riemann B, Pike VW, Schober O, Schafers M (2004) Synthesis and first in vivo evaluation of new selective high affinity β1-adrenoceptor radioligands for SPECT based on ICI 89,406. Bioorg Med Chem 12:4117–4132

    PubMed  Google Scholar 

  • Wang S, Lee RJ, Mathias CJ, Green MA, Low PS (1996) Synthesis, purification, and tumor cell uptake of 67Ga-deferoxamine-folate, a potential radiopharmaceutical for tumor imaging. Bioconjugate Chem 7:56–62

    Google Scholar 

  • Wang S, Luo J, Lantrip DA, Waters DJ, Mathias CJ, Green MA, Fuchs PL, Low PS (1997) Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjugate Chem 8:673–679

    Google Scholar 

  • Waterhouse RN, Chapman J, Izard B, Donald A, Belbin K, O’Brien JC, Collier TL (1997) Examination of four 123I-labeled piperidine-based sigma receptor ligands as potential melanoma imaging agents: initial studies in mouse tumor models. Nucl Med Biol 24:587–593

    PubMed  Google Scholar 

  • Waterhouse RN, Stabin MG, Page JG (2003) Preclinical acute toxicity studies and rodent-based dosimetry estimates of the novel σ1 receptor radiotracer [18F]FPS. Nucl Med Biol 30:555–563

    PubMed  Google Scholar 

  • Wedeking PW, Wager RE, Arunachalam T, Ramalingam K, Linder KE, Ranganathan RS, Nunn AD, Raju N, Tweedle MF (2002) Metal complexes derivatized with folate for use in diagnostic and therapeutic application. US Patent 6221334

    Google Scholar 

  • Welch MJ, Redvanly CS (2003) Handbook of radiopharmaceuticals: radiochemistry and applications. Wiley, Chichester

    Google Scholar 

  • Weng YH, Yen TC, Chen MC, Kao PF, Tzen KY, Chen RS, Wey SP, Ting G, Lu CS (2004) sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson’s disease from healthy subjects. J Nucl Med 45:393–401

    PubMed  Google Scholar 

  • Westkaemper RB, Glennon RA (2002) Application of ligand SAR, receptor modeling and receptor mutagenesis to the discovery and development of a new class of 5-HT2A ligands. Curr Top Med Chem 2:575–598

    PubMed  Google Scholar 

  • Wheeler KT, Wang LM, Wallen CA, Childers SR, Cline JM, Keng PC, Mach RH (2000) Sigma-2 receptors as a biomarker of proliferation in solid tumors. Br J Cancer 82:1223–1232

    PubMed  Google Scholar 

  • Wichter T, Schafers M, Rhodes CG, Borggrefe M, Lerch H, Lammertsma AA, Hermansen F, Schober O, Breithardt G, Camici PG (2000) Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic β-adrenergic receptor density with positron emission tomography. Circulation 101:1552–1558

    PubMed  Google Scholar 

  • Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D, Houle S, Seeman P, Ginovart N (2005) Radiosynthesis and evaluation of [11C]-(+)-4–propyl-3,4,4a,5,6,10b-hexahydro-2h-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem 48:4153–4160

    PubMed  Google Scholar 

  • Wong DF, Brasic JR (2001) In vivo imaging in neurotransmitter systems in neuropsychiatry. Clin Neurosc Res 1:35–45

    Google Scholar 

  • Wong DF, Yung B, Dannals RF, Shaya EK, Ravert HT, Chen CA, Chan B, Folio T, Scheffel U, Ricaurte GA, Neumeyer JL, Wagner HN Jr, Michael JK (1993) In vivo imaging of baboon and human dopamine transporters by positron emission tomography using [11C]WIN 35,428. Synapse 15:130–142

    PubMed  Google Scholar 

  • Wu WL, Burnett DA, Spring R, Greenlee WJ, Smith M, Favreau L, Fawzi A, Zhang H, Lachowicz JE (2005) Dopamine D1∕D5 receptor antagonists with improved pharmacokinetics: design, synthesis, and biological evaluation of phenol bioisosteric analogues of benzazepine D1∕D5 antagonists. J Med Chem 48:680–693

    PubMed  Google Scholar 

  • Yamada S, Ishima T, Tomita T, Hayashi M, Okada T, Hayashi E (1984) Alterations in cardiac α and β adrenoceptors during the development of spontaneous hypertension. J Pharmacol Exp Ther 228:454–460

    PubMed  Google Scholar 

  • Yamada S, Ohkura T, Uchida S, Inabe K, Iwatani Y, Kimura R, Hoshino T, Kaburagi T (1996) A sustained increase in β-adrenoceptors during long-term therapy with metoprolol and bisoprolol in patients with heart failure from idiopathic dilated cardiomyopathy. Life Sci 58:1737–1744

    PubMed  Google Scholar 

  • Yamaguchi I, Kopin IJ (1980) Differential inhibition of α1 and α2 adrenoceptor-mediated pressor responses in pithed rats. J Pharmacol Exp Ther 214:275–281

    PubMed  Google Scholar 

  • Yang ZY, Perry B, Mukherjee J (1996) Fluorinated benzazepines: 1. Synthesis, radiosynthesis and biological evaluation of a series of substituted benzazepines as potential radiotracers for positron emission tomographic studies of dopamine D-1 receptors. Nucl Med Biol 23:793–805

    PubMed  Google Scholar 

  • Yoo J, Dence CS, Sharp TL, Katzenellenbogen JA, Welch MJ (2005) Synthesis of an estrogen receptor-selective radioligand: 5-[18F]fluoro-(2R,3S)-2,3-bis(4-hydroxyphenyl)pentanenitrile and comparison of in vivo distribution with 16-[18F]fluoro-17-estradiol. J Med Chem 48:6366–6378

    PubMed  Google Scholar 

  • Yoshida Y, Kurokawa T, Sawamura Y, Shinagawa A, Okazawa H, Fujibayashi Y, Kotsuji F (2007) The positron emission tomography with F18 17β-estradiol has the potential to benefit diagnosis and treatment of endometrial cancer. Gynecol Oncol 104:764-766

    PubMed  Google Scholar 

  • Zanzonico PB, Finn R, Pentlow KS, Erdi Y, Beattie B, Akhurst T, Squire O, Morris M, Scher H, McCarthy T, Welch M, Larson SM, Humm JL (2004) PET-based radiation dosimetry in man of 18F-fluorodihydrotestosterone, a new radiotracer for imaging prostate cancer. J Nucl Med 45:1966–1971

    PubMed  Google Scholar 

  • Zessin J, Deuther-Conrad W, Kretzschmar M, Wust F, Pawelke B, Brust P, Steinbach J, Bergmann R (2006) [11C]SMe-ADAM, an imaging agent for the brain serotonin transporter: synthesis, pharmacological characterization and microPET studies in rats. Nucl Med Biol 33:53–63

    PubMed  Google Scholar 

  • Zhang MR, Kida T, Noguchi J, Furutsuka K, Maeda J, Suhara T, Suzuki K (2003a) [11C]DAA1106: radiosynthesis and in vivo binding to peripheral benzodiazepine receptors in mouse brain. Nucl Med Biol 30:513–519

    PubMed  Google Scholar 

  • Zhang MR, Maeda J, Furutsuka K, Yoshida Y, Ogawa M, Suhara T, Suzuki K (2003b) [18F]FMDAA1106 and [18F]FEDAA1106: two positron-emitter labeled ligands for peripheral benzodiazepine receptor (PBR). Bioorg Med Chem Lett 13:201–204

    PubMed  Google Scholar 

  • Zhu Z, Guo N, Narendran R, Erritzoe D, Ekelund J, Hwang DR, Bae SA, Laruelle M, Huang Y (2004) The new PET imaging agent [11C]AFE is a selective serotonin transporter ligand with fast brain uptake kinetics. Nucl Med Biol 31:983–994

    PubMed  Google Scholar 

  • Zisterer DM, Williams DC (1997) Peripheral-type benzodiazepine receptors. Gen Pharmacol 29:305–314

    PubMed  Google Scholar 

  • Zubieta JK, Gorelick DA, Stauffer R, Ravert HT, Dannals RF, Frost JJ (1996) Increased mu opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving. Nat Med 2:1225–1229

    PubMed  Google Scholar 

  • Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, Meyer CR, Koeppe RA, Stohler CS (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293:311–315

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Welch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hagooly, A., Rossin, R., Welch, M.J. (2008). Small Molecule Receptors as Imaging Targets. In: Semmler, W., Schwaiger, M. (eds) Molecular Imaging II. Handbook of Experimental Pharmacology, vol 185/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77496-9_5

Download citation

Publish with us

Policies and ethics