Peptides, Multimers and Polymers

  • I. Dijkraaf
  • H. J. WesterEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 185/2)


Abstract Due to their favorable properties and pharmacokinetics, peptides are often regarded as “agents of choice” for imaging and radiotherapy. Chemical strategies have been developed that allow their site specific labeling with various radionuclides for PET and SPECT, without compromising their biological integrity. Together with the overexpression of a wide range of peptide receptors and binding sites on tumor cells or matrix components, this class of compounds offers multiple imaging applications. Furthermore, radiolabeled peptides have great potential as carrier molecules for site-specific delivery of other signalling units, such as fluorescent moieties, cyctotoxic compounds or metals for magnetic resonance imaging. In addition, great efforts have been made to exploit the favorable characteristics of peptides for the development of larger constructs, such as multimeric ligands, polymer-peptide conjugates and “peptide-coated” liposomes and nanoparticles. Some peptides have already entered clinical routine application; some are currently being evaluated in clinical studies. However, a variety of peptides is still “waiting” to enter the imaging arena. This chapter presents a brief overview of the highly active field of peptide radiopharmaceuticals and the future potential of multimeric and polymeric peptide constructs.


Tumor Uptake Medullary Thyroid Cancer Peptide Receptor Radionuclide Therapy Bombesin Receptor Metastatic Medullary Thyroid Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adair BD, Yeager M (2002) Three-dimensional model of the human platelet integrin αIIbβ3 based on electron cryomicroscopy and x-ray crystallography. Proc Natl Acad Sci USA 99: 14059–14064PubMedCrossRefGoogle Scholar
  2. Alberto R, Abram U (2003) 99mTc: Labeling Chemistry and Labeled Compounds. A. Vertès, S. Nagy and Z. Klencsár (eds) Handbook of Nuclear Chemistry-Vol. 4, 211–256Google Scholar
  3. Alberto R (2007) The particular role of radiopharmacy within bioorganicmetallic chemistry. J Organomet Chem 692:1179–1186CrossRefGoogle Scholar
  4. Anderson SA, Rader RK, Westlin WF et al (2000) Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. Magn Reson Med 44:433–439PubMedCrossRefGoogle Scholar
  5. Arnold M, Cavalcanti-Adam E-A, Glass R et al (2004) Activation of integrin function by nanopatterned adhesive interfaces. Chem Phys Chem 5:383–388PubMedGoogle Scholar
  6. Bakker WH, Breeman WA, van der Pluijm ME, de Jong M, Visser TJ, Krenning EP (1996) Iodine-131 labelled octreotide: not an option for somatostatin receptor therapy.Eur J Nucl Med 23(7):775–781PubMedCrossRefGoogle Scholar
  7. Barret P, MacDonald A, Helliwell R, Davidson G, Morgan P (1994) Cloning and expression of a new member of the melanocyte–stimulating hormone receptor family. J Mol Endocrinol 12:203–213CrossRefGoogle Scholar
  8. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O, Niemeyer M, Kessler H, Wester HJ, Weber WA, Schwaiger M (2006) Positron emission tomography using [18F]Galacto-rgd identifies the level of αvβ3 expression in man. Clin Cancer Res 12:3942–3949PubMedCrossRefGoogle Scholar
  9. Béhé M, Behr TM (2002) Cholecystokinin-B (CCK-B)/gastrin receptor targeting peptides for staging and therapy of medullary thyroid cancer and other CCK-B receptor expressing malignancies. Biopolymers 66: 399–418PubMedCrossRefGoogle Scholar
  10. Béhé M, Becker W, Gotthardt M, Angerstein C, Behr TM (2003) Improved kinetic stability of DTPA-Dglu as compared with monofunctional DTPA in chelating indium and yttrium: preclinical and initial clinical evaluation of radiometal labeled minigastrin derivatives. Eur J Nucl Med Mol Imaging 30:1140–1146PubMedCrossRefGoogle Scholar
  11. Behr TM, Jenner N, Radetzky S et al (1998) Targeting of cholecystokinin-B/gastrin receptors in vivo: preclinical and initial clinical evaluation of the diagnostic and therapeutic potential of radiolabeled gastrin. Eur J Nucl Med 25:424–430PubMedCrossRefGoogle Scholar
  12. Behr TM, Jenner N, Behe M et al (1999) Radiolabeled peptides for targeting cholecystokinin-B/gastrin receptor-expressing tumors. J Nucl Med 40:1029–1044PubMedGoogle Scholar
  13. Bodei L, Cremonesi M, Grana C, Rocca P, Bartolomei M, Chinol M, Paganelli G (2004) Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 31:1038–1046PubMedCrossRefGoogle Scholar
  14. Boturyn D, Coll J-L, Garanger E, Favrot M-C, Dumy P (2004) Template assembled cyclopeptides as multimeric systems for integrin targeting and endocytosis. J Amer Chem Soc 126:5730–5739CrossRefGoogle Scholar
  15. Breeman WA, de Jong M, Kwekkeboom DJ, Valkema R, Bakker WH, Kooij PP, Visser TJ, Krenning EP (2001) Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. Eur J Nucl Med 28:1421–1429PubMedCrossRefGoogle Scholar
  16. Breeman WAP, de Jong M, Erion JL, Bugaj JE, Srinivasan A, Bernard BF, Kwekkeboom DJ, Visser TJ, Krenning EP (2002) Preclinical comparison of 111In-labeled DTPA- or DOTA-bombesin analogs for receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 43:1650–1656PubMedGoogle Scholar
  17. Buchsbaum DJ (2004) Imaging and therapy of tumors induced to express somatostatin receptor by gene transfer using radiolabeled peptides and single chain antibody constructs. Sem Nucl Med 34:32–46CrossRefGoogle Scholar
  18. Buchsbaum DJ, Chaudhuri TR, Yamamoto M, Zinn KR (2004) Gene expression imaging with radiolabeled peptides. Ann Nucl Med 18:275–283PubMedCrossRefGoogle Scholar
  19. Burkhart DJ, Kalet BT, Coleman MP, Post GC, Koch TH (2004) Doxorubicin-formaldehyde conjugates targeting alphavbeta3 integrin. Mol Cancer Ther 3:1593–1604PubMedGoogle Scholar
  20. Carraway R, Leeman SE (1973) The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem 248:6854–6861PubMedGoogle Scholar
  21. Chen J, Cheng Z, Hoffman TJ, Jurisson SS, Quinn TP (2000) Melanoma–targeting Properties of 99mTechnetium-labeled cyclic α-melanocyte-stimulating hormone peptide analogues. Cancer Res 60:5649–5658PubMedGoogle Scholar
  22. Chen X, Hou Y, Tohme M et al (2004a) Pegylated Arg–Gly–Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression. J Nucl Med 45:1776–1783PubMedGoogle Scholar
  23. Chen X, Liu S, Hou Y, Tohme M, Park R, Bading JR et al (2004b) MicroPET imaging of breast cancer αv-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 6:350–359PubMedCrossRefGoogle Scholar
  24. Chen X, Park R, Hou Y, Tohme M, Shahinian AH, Bading JR, Conti PS (2004c) MicroPET and autoradiographic imaging of GRP receptor expression with 64Cu-DOTA-[Lys3]bombesin in human prostate adenocarcinoma xenografts. J Nucl Med 45:1390–1397PubMedGoogle Scholar
  25. Chen X, Park R, Shahinian AH, Bading JR, Conti PS (2004d) Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 31:11–19PubMedCrossRefGoogle Scholar
  26. Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS (2004e) Micro-PET imaging of αvβ3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 3:96–104PubMedCrossRefGoogle Scholar
  27. Cheng Z, Chen J, Miao Y, Owen NK, Quinn TP, Jurisson SS (2002) Modification of the structure of a metallopeptide: synthesis and biological evaluation of 111In-labeled DOTA-conjugated rhenium-cyclized α-MSH analogues. J Med Chem45:3048–3056Google Scholar
  28. Cone RD, Mountjoy KG, Robbins LS et al (1993) Cloning and functional characterization of a family of receptors for the melanotropin peptides. Ann N Y Acad Sci 680:342–363PubMedCrossRefGoogle Scholar
  29. de Jong M, Bakker WH, Krenning EP, Breeman WA, van der Pluijm ME, Bernard BF, Visser TJ, Jermann E, Behe M, Powell P, Macke HR (1997) Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,d-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med 24:368–371PubMedCrossRefGoogle Scholar
  30. de Jong M, Bakker WH, Bernard BF et al (1999) Preclinical and initial clinical evaluation of 111In-labeled nonsulfated CCK8 analog: a peptide for CCK-B receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 40: 2081–2087PubMedGoogle Scholar
  31. de Jong M, Breeman WA, Bernard BF, Bakker WH, Schaar M, van Gameren A, Bugaj JE, Erion J, Schmidt M, Srinivasan A, Krenning EP (2001) [177Lu-DOTA(0),Tyr3] octreotate for somatostatin receptor-targeted radionuclide therapy. Int J Cancer 92:628–633PubMedCrossRefGoogle Scholar
  32. de Jong M, Kwekkeboom D, Valkema R, Krenning EP (2003) Radiolabelled peptides for tumour therapy: current status and future directions. Plenary lecture at the EANM 2002. Eur J Nucl Med Mol Imaging 30:463–469PubMedGoogle Scholar
  33. De Visser M, Janssen PJJM, Srinivasan A, Reubi JC, Waser B, Erion JL, Schmidt MA, Krenning EP, De Jong M (2003) Stabilised 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging 30:1134–1139PubMedCrossRefGoogle Scholar
  34. De Visser M, Van Weerden WM, De Ridder CM, Reneman S, Wildeman N, Melis M, Krenning EP, De Jong M (2005) Androgen regulation of GRP receptor-expression in human prostate tumor xenografts. J Nucl Med 46:396PGoogle Scholar
  35. Desarnaud F, Labbé O, Eggerickx D, Vassart G, Parmentier M (1994) Molecular cloning, functional expression and pharmacological characterization of a mouse melanocortin receptor gene. Biochem J 299:366–373Google Scholar
  36. Dubey PK, Mishra V, Jain S, Mahor S, Vyas SP (2004). Liposomes modified with cyclic RGD peptide for tumor targeting. J Drug Target 12:257–264PubMedCrossRefGoogle Scholar
  37. Dumont Y, Thakur M, Beck-Sickinger A, Fournier A, Quirion R (2003) Development and characterization of a highly selective neuropeptide Y Y5 receptor agonist radioligand: [125I][hPP1-17, Ala31, Aib32]NPY. Br J Pharmacol 139:1360–1368PubMedCrossRefGoogle Scholar
  38. Dumont Y, Thakur M, Beck-Sickinger A, Fournier A, Quirion R (2004) Characterization of a new neuropeptide Y Y5 agonist radioligand: [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP. Neuropeptides 38:163–174PubMedCrossRefGoogle Scholar
  39. Fathi Z, Iben LG, Parker EM (1995) Cloning, expression, and tissue distribution of a fifth melanocortin receptor subtype. Neurochem Res 20:107–113PubMedCrossRefGoogle Scholar
  40. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272: 872–877PubMedCrossRefGoogle Scholar
  41. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5: 161–171PubMedCrossRefGoogle Scholar
  42. Froidevaux S, Calame-Christe M, Schuhmacher J, Tanner H, Saffrich R, Henze M, Eberle AN (2004) A gallium-labeled DOTA-α-melanocyte-stimulating hormone analog for PET imaging of melanoma metastases. J Nucl Med 45:116–123PubMedGoogle Scholar
  43. Fujii N, Oishi S, Hiramatsu K, Araki T, Ueda S, Tamamura H, Otaka A, Kusano S, Terakubo S, Nakashima H, Broach JA, Trent JO, Wang ZX, Peiper SC (2003) Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. Angew Chem Int Ed 42:3251–3253CrossRefGoogle Scholar
  44. Gantz I, Konda Y, Tashiro T, Shimoto Y, Miwa H, Munzert G, Watson SJ, Del Valle V, Yamada T (1993a) Molecular cloning of a novel melanocortin receptor. J Biol Chem 268:8246–8250PubMedGoogle Scholar
  45. Gantz I, Miwa H, Konda Y, Shimoto Y, Tashiro T, Watson SJ, Del Valle V, Yamada T (1993b) Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J Biol Chem 268:15174–15179PubMedGoogle Scholar
  46. Garcia-Garayoa E, Maes V, Bläuenstein P, Blanc A, Hohn A, Tourwé D, Schubiger PA (2006) Double-stabilized neurotensin analogues as potential radiopharmaceuticals for NTR-positive tumors. Nucl Med Biol 33:495–503PubMedCrossRefGoogle Scholar
  47. Garg PK, Alston KL, Zalutsky MR (1995) Catabolism of radioiodinated murine monoclonal antibody F(ab)2 fragment labeled using N-succinimidyl 3-iodobenzoate and Iodogen methods. Bioconjug Chem 6:493–501PubMedCrossRefGoogle Scholar
  48. Gehlert DR (1999) Role of hypothalamic neuropeptide Y in feeding and obesity. Neuropeptides 33:329–338PubMedCrossRefGoogle Scholar
  49. Giblin MF, Wang N, Hoffman TJ, Jurisson SS, Quinn TP (1998) Design and characterization of α-melanotropin peptide analogs cyclized through rhenium and technetium metal coordination. Proc Natl Acad Sci U S A 95:12814–12818PubMedCrossRefGoogle Scholar
  50. Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, Erchegyi J, Rivier J, Macke HR, Reubi JC (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 103:16436–16441PubMedCrossRefGoogle Scholar
  51. Gotthardt M, Fischer M, Holz JB, Jungclas H, Fritsch HW, Béhé M et al (2002) Use of the incretin hormone glucagon–like peptide–1 (GLP–1) for the detection of insulinomas: first experimental results. Eur J Nucl Med Mol Imaging 29: 597–606PubMedCrossRefGoogle Scholar
  52. Gotthardt M, Béhé MP, Beuter D, Battmann A, Bauhofer A, Schurrat T, Schipper M, Pollum H, Oyen WJG, Behr TM (2006) Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imag 33: 1273–1279CrossRefGoogle Scholar
  53. Gotthardt M, Lalyko G, van Eerd-Vismale J, Keil B, Schurrat T, Hower M, Laverman P, Behr TM, Boerman OC, Goke B, Behe M (2006b) A new technique for in vivo imaging of specific GLP-1 binding sites: First results in small rodents. Regul Pept 137:162–167PubMedCrossRefGoogle Scholar
  54. Gottschalk K-E, Adams PD, Brunger AT, Kessler H (2002) Transmembrane signal transduction of the αIIbβ3 integrin. Protein Science11:1800–1812PubMedCrossRefGoogle Scholar
  55. Grundemar L, Bloom SR (1997) Neuropeptide Y and drug developments, vol 396. Academic Press, San DiegoGoogle Scholar
  56. Hajitou A, Pasqualini R, Arap W (2006) Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc Med 16:80–88PubMedCrossRefGoogle Scholar
  57. Hanaoka H, Mukai T, Tamamura H, Mori T, Ishino S, Ogawa K, Iida Y, Doi R, Fujii N, Saji H (2006) Development of a 111In-labeled peptide derivative targeting a chemokine receptor, CXCR4, for imaging tumors. Nucl Med Biol 33:489–494PubMedCrossRefGoogle Scholar
  58. Handl HL, Vagner J, Han H, Mash E, Hruby VJ, Gillies RJ (2004) Hitting multiple targets with multimeric ligands. Expert Opin Ther Targets 8:565–586PubMedCrossRefGoogle Scholar
  59. Haubner R, Wester H-J (2004) Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 10:1439–1455PubMedCrossRefGoogle Scholar
  60. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H et al (1999) Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 40:1061–1071PubMedGoogle Scholar
  61. Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, Kessler H, Schwaiger M (2001) Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336PubMedGoogle Scholar
  62. Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, Schwaiger M (2004) [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjugate Chem 15:61–69CrossRefGoogle Scholar
  63. Haubner R, Weber WA, Beer AJ et al (2005) Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med. 2:244–254CrossRefGoogle Scholar
  64. Hennig IM, Laissue JA, Horisberger U, Reubi JC (1995) Substance P receptors in human primary neoplasms. Int J Cancer 61:786–792PubMedCrossRefGoogle Scholar
  65. Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, Macke HR, Hofmann M, Debus J, Haberkorn U (2001) PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 42:1053–1056PubMedGoogle Scholar
  66. Hofmann M, Maecke H, Borner R, Weckesser E, Schoffski P, Oei L, Schumacher J, Henze M, Heppeler A, Meyer J, Knapp H (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757PubMedCrossRefGoogle Scholar
  67. Hruby VJ, Sharma SD, Toth K, Jaw JY, Al–Obeidi F, Sawyer TK, Hadley ME (1993) Design, synthesis, and conformation of superpotent and prolonged acting melanotropins. Ann N Y Acad Sci 680:51–cPubMedCrossRefGoogle Scholar
  68. Huhalov A, Chester KA (2004) Engineered single chain antibody fragments for radioimmunotherapy. Q J Nucl Med Mol Imaging 48:279–288PubMedGoogle Scholar
  69. Hultsch C, Pawelke B, Bergmann, Wuest F (2006) Synthesis and evaluation of novel multimeric neurotensin(8-13) analogs. Bioorg Med Chem 14:5913–5920PubMedCrossRefGoogle Scholar
  70. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS et al (2002a) Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151PubMedGoogle Scholar
  71. Janssen MLH, Oyen WJG, Massuger LFAG, Frielink C, Dijkgraaf I, Edwards DS et al (2002b) Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor imaging. Cancer Biother Radiopharm 17:641–646PubMedCrossRefGoogle Scholar
  72. Kessler H, Haupt A, Schudok M (1988) structural optimization of peptides for cytoprotection of rat liver cells. In: Shiba T, Sakakibara S (eds) Peptide chemistry 1987 (Proc Jpn Symp Peptide Chem, Sept. 28 – Oct. 2, 1987, Kobe, Japan). Protein Research Foundation, Osaka, pp 627–630Google Scholar
  73. Kessler H, Schudok M, Haupt A (1989) Dimerization of cyclic hexapeptides: strong increase of biological activity. In: Jung G, Bayer E (eds) Peptides 1988 (Proc 20th Eur Peptide Symp, Sept. 4–9, 1988, Tübingen). Walter de Gruyter, Berlin New York, pp 664–666Google Scholar
  74. Kiessling LL, Gestwicki JE, Strong LE (2000) Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr Opin Chem Biol 6:696–703CrossRefGoogle Scholar
  75. Kneifel S. Cordier D, Good S, Ionescu MCS, Ghaffari A, Hofer S, Kretzschmar M, Tolnay M, Apostolidis C, Waser B, Arnold M, Mueller–Brand J, Maecke HR, Reubi JC, Merlo A (2006) Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance P. Clin Cancer Res 12: 3843–3850Google Scholar
  76. Körner M, Waser B, Reubi JC (2004a) Neuropeptide Y receptor expression in human primary ovarian neoplasms. Lab Invest 84:71–80PubMedCrossRefGoogle Scholar
  77. Körner M, Waser B, Reubi JC (2004b) High expression of NPY receptors in tumors of the human adrenal gland and extraadrenal paraganglia. Clin Cancer Res 10:8426–8433PubMedCrossRefGoogle Scholar
  78. Koglin N, Anton M, Hauser A, Saur D, Algul H, Schmid R, Gansbacher B, Schwaiger M, Wester HJ (2006) CXCR4 chemokine receptor SPECT/PET imaging with radiolabeled CPCR4: a promising approach for imaging metastatic processes. J Nucl Med 47(Suppl 1):505PGoogle Scholar
  79. Kok RJ, Schraa AJ, Bos EJ et al (2002) Preparation and functional evaluation of RGD-modified proteins as alpha(v)beta(3) integrin directed therapeutics. Bioconjug Chem 13:128–135PubMedCrossRefGoogle Scholar
  80. Koivunen E, Wang B, Ruoslahti E (1995) Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N Y) 13:265–270CrossRefGoogle Scholar
  81. Komazawa H, Saiki I, Aoki M et al (1993a) Synthetic Arg-Gly-Asp-Ser analogues of the cell recognition site of fibronectin that retain antimetastatic and anti-cell adhesive properties. Biol Pharm Bull 16:997–1003PubMedGoogle Scholar
  82. Komazawa H, Saiki I, Igarashi Y et al (1993b) The conjugation of RGDS peptide with CM-chitin augments the peptide-mediated inhibition of tumor metastasis. Carbohydrate Polymers 21: 299–307CrossRefGoogle Scholar
  83. Komazawa H, Saiki I, Nishikawa N et al (1993c) Inhibition of tumor metastasis by Arg-Gly-Asp-Ser (RGDS) peptide conjugated with sulfated chitin derivative, SCM-chitin-RGDS. Clin Exp Metastasis 11:482–491PubMedCrossRefGoogle Scholar
  84. Kramer RH, Karpen JW (1998) Spanning binding sites on allosteric proteins with polymer-linked ligand dimers. Nature 395:710–713PubMedCrossRefGoogle Scholar
  85. Krantic S, Goddard I, Saveanu A, Giannetti N, Fombonne J, Cardoso A, Jaquet P, Enjalbert A (2004) Novel modalities of somatostatin actions. Eur J Endocrinol 151:643–655PubMedCrossRefGoogle Scholar
  86. Kraus JL, Menassa P (1987) Effect of new biologically active polypeptides on dihexadecyl phosphate vesicles. Pharmacol Res Commun 19:469–77PubMedCrossRefGoogle Scholar
  87. Kraus JL, DiPaola A, Belleau B (1984) Cyclic tetrameric clusters of chemotactic peptides as superactive activators of lysozyme release from human neutrophils. Biochem Biophys Res Commun 124:939–944PubMedCrossRefGoogle Scholar
  88. Krenning EP, Bakker WH, Breeman WA, Koper JW, Kooij PP, Ausema L, Lameris JS, Reubi JC, Lamberts SW (1989) Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1(8632):242–244PubMedCrossRefGoogle Scholar
  89. Krenning EP, Kwekkeboom DJ, Valkema R, Pauwels S, Kvols LK, De Jong M (2004) Peptide receptor radionuclide therapy. Ann N Y Acad Sci 1014:234–245PubMedCrossRefGoogle Scholar
  90. Kroog GS, Jensen RT, Battey JF (1995) Mammalian bombesin receptors. Med Res Rev 15: 389–417PubMedCrossRefGoogle Scholar
  91. Kwekkeboom DJ, Bakker WH, Kooij PPM et al (2000) Cholecystokinin receptor imaging using an octapeptide DTPA-CCK analogue in patients with medullary thyroid carcinoma. Eur J Nucl Med 27:1312–17PubMedCrossRefGoogle Scholar
  92. Kwekkeboom DJ, Bakker WH, Kooij PP, Konijnenberg MW, Srinivasan A, Erion JL,Schmidt MA, Bugaj JL, de Jong M, Krenning EP (2001) [177Lu-DOTAOTyr3]octreotate: comparison with [111In-DTPAo]octreotide in patients. Eur J Nucl Med 28:1319–1325PubMedCrossRefGoogle Scholar
  93. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, O’dorisio TM, Valkema R, Bodei L, Chinol M, Maecke HR, Krenning EP (2005) Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 46(Suppl 1):62S–66SPubMedGoogle Scholar
  94. Labbé O, Desarnaud F, Eggerickx D, Vassart G, Parmentier M (1994) Molecular cloning of a mouse melanocortin 5 receptor gene widely expressed in peripheral tissues. Biochemistry 33:4543–4549PubMedCrossRefGoogle Scholar
  95. Landon LA, Zou J, Deutscher SL (2004) Is phage display technology on target for developing peptide - based cancer drugs? Curr Drug Discov Technol. 2004 Jan; 1(2):113–132PubMedCrossRefGoogle Scholar
  96. Langer M, La Bella R, Garcia-Garayoa E, Beck–Sickinger AG (2001) 99mTc-labeled neuropeptide Y as potential tumor imaging agents. Bioconjugate Chem12:1028–1034Google Scholar
  97. Lantry LE, Cappelletti E, Maddalena ME, Fox JS, Feng W, Chen J, Thomas R, Eaton SM, Bogdan NJ, Arunachalam T, Reubi JC, Raju N, Metcalfe C, Lattuada L, Linder KE, Swenson RE, Tweedle MF, Nunn AD (2006) 177Lu-AMBA: synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 47:1144–1152PubMedGoogle Scholar
  98. Li R, Babu CR, Lear JD, Wand AJ, Bennett JS, DeGrado WF (2001) Oligomerization of the integrin αIIbβ3: roles of the transmembrane and cytoplasmic domains. Proc Natl Acad Sci U S A 98:12462–12467PubMedCrossRefGoogle Scholar
  99. Li W, Metcalf DG, Gorelik R et al (2005) A push-pull mechanism for regulating integrin function. Proc Natl Acad Sci U S A 102:1424–1429PubMedCrossRefGoogle Scholar
  100. Luo Y, Prestwich GD (2002) Cancer–targeted polymeric drugs. Curr Cancer Drug Targets 2: 209–226PubMedCrossRefGoogle Scholar
  101. Luyt LG, Katzenellenbogen JA (2002) A trithiolate tripodal bifunctional ligand for the radiolabeling of peptides with gallium(III). Bioconjug Chem 13:1140–1145PubMedCrossRefGoogle Scholar
  102. Maecke HR, Hofmann M, Haberkorn U (2005) (68)Ga-labeled peptides in tumor imaging. J Nucl Med 46(Suppl 1):172S–178SPubMedGoogle Scholar
  103. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR-effect in macromolecular therapeutics: a review. J Control Release 65:271–284PubMedCrossRefGoogle Scholar
  104. Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3: 319–328PubMedCrossRefGoogle Scholar
  105. Maina T, Nock BA, Zhang H, Nikolopoulou A, Waser B, Reubi JC, Maecke HR (2005) Species differences of bombesin analog interactions with GRP-R define the choice of animal models in the development of GRP-R-targeting drugs. J Nucl Med 46:823–830PubMedGoogle Scholar
  106. Mammen M, Choi SK, Whitesides M (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37: 2754–2794CrossRefGoogle Scholar
  107. Matsuoka T, Hirakawa K, Chung YS et al (1998) Adhesion polypeptides are useful for the prevention of peritoneal dissemination of gastric cancer. Clin Exp Metastasis 16:381–388PubMedCrossRefGoogle Scholar
  108. Meisetschlager G, Poethko T, Stahl A, Wolf I, Scheidhauer K, Schottelius M, Herz M, Wester HJ, Schwaiger M (2006) Gluc-Lys([18F]FP)-TOCA PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with [111In]DTPA-octreotide. J Nucl Med 47:566–573PubMedGoogle Scholar
  109. Miao Y, Owen NK, Whitener D, Gallazi F, Hoffman TJ, Quinn TP (2002) In vivo evaluation of 188Re-labeled alpha-melanocyte stimulating hormone peptide analogs for melanoma therapy. Int J Cancer 101:480–487PubMedCrossRefGoogle Scholar
  110. Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammer D, Quirion R, Schwartz T, Westfall T (1998) XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 50:143–150PubMedGoogle Scholar
  111. Mitra A, Nan A, Ghandehari H, McNeill E, Mulholland J, Line BR (2004) Technetium-99m-Labeled N-(2-hydroxypropyl) methacrylamide copolymers: synthesis, characterization, and in vivo biodistribution. Pharm Res 21:1153–1159PubMedCrossRefGoogle Scholar
  112. Mitra A, Mulholland J, Nan A, McNeill E, Ghandehari H, Line BR (2005) Targeting tumor angiogenic vasculature using polymer-RGD conjugates. J Control Release 102:191–201PubMedCrossRefGoogle Scholar
  113. Mountjoy KG, Robbins LS, Mortrud MT (1992) Cone RD. The cloning of a family of genes that encode the melanocortin receptors. Science 257:1248–1251PubMedCrossRefGoogle Scholar
  114. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56PubMedCrossRefGoogle Scholar
  115. Nock B, Nikolopoulou A, Chiotellis E, Loudos G, Maintas D, Reubi JC, Maina T (2003) [99mTc]Demobesin 1, a novel potent bombesin analogue for GRP receptor-targeted tumour imaging. Eur J Nucl Med Mol Imaging 30:247–258PubMedGoogle Scholar
  116. Nock BA, Nikolopoulou A, Galanis A, Cordopatis P, Waser B, Reubi JC, Maina T (2005a) Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. J Med Chem 48:100–110PubMedCrossRefGoogle Scholar
  117. Nock BA, Maina T, Béhé M, Nikolopoulou A, Gotthardt M, Schmitt JS, Behr TM, Mäcke HR (2005b) CCK-2/gastrin receptor-targeted tumor imaging with 99mTc-labeled minigastrin analogs. J Nucl Med 46:1727–1736PubMedGoogle Scholar
  118. Noguchi Y, Wu J, Duncan R et al (1998) Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 89: 307–314PubMedGoogle Scholar
  119. Poethko T, Schottelius M, Thumshirn G, Hersel U, Herz M, Henriksen G et al (2004a) Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. J Nucl Med 45:892–902PubMedGoogle Scholar
  120. Poethko T, Schottelius M, Thumshirn G, Herz M, Haubner R, Henriksen G et al (2004b) Chemoselective pre-conjugate radiohalogenation of unprotected mono- and multimeric peptides via oxime formation. Radiochimica Acta 92:317–327CrossRefGoogle Scholar
  121. Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427PubMedCrossRefGoogle Scholar
  122. Reubi JC, Waser B (2003) Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 30:781–793PubMedGoogle Scholar
  123. Reubi JC, Schaer JC, Waser B (1997) Cholecystokinin(CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res 57:1377–1386PubMedGoogle Scholar
  124. Reubi JC, Waser B, Schaer JC et al (1998) Unsulfated DTPA- and DOTA-CCK analogs as specific high-affinity ligands for CCK-B receptor-expressing human and rat tissues in vitro and in vivo. Eur J Nucl Med 25:481–490PubMedCrossRefGoogle Scholar
  125. Reubi JC, Gugger M, Waser B, Schaer JC (2001) Y1-mediated effect of neuropeptide Y in cancer: breast carcinomas as targets. Cancer Res 61:4636–4641PubMedGoogle Scholar
  126. Rogers BE, McLean SF, Kirkman RL, Della Manna D, Bright SJ, Olsen CC et al (1999) In vivo localization of [111In]-DTPA-D-Phe1-octreotide to human ovarian tumor xenografts induced to express the somatostatin receptor subtype 2 using an adenoviral vector. Clin Cancer Res 5:383–393PubMedGoogle Scholar
  127. Schiffelers RM, Koning GA, ten Hagen TL et al (2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 91:115–122PubMedCrossRefGoogle Scholar
  128. Schneider D, Engelman DM (2004) Involvement of transmembrane domain interactions in signal transduction by α∕β integrins. J Biol Chem 279:9840–9846PubMedCrossRefGoogle Scholar
  129. Schottelius M, Poethko T, Herz M, Reubi JC, Kessler H, Schwaiger M, Wester HJ (2004) First (18)F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography. Clin Cancer Res 10:3593–3606PubMedCrossRefGoogle Scholar
  130. Schottelius M, Reubi JC, Eltschinger V, Schwaiger M, Wester HJ (2005) N-terminal sugar conjugation and C-terminal Thr-for-Thr(ol) exchange in radioiodinated Tyr3-octreotide: effect on cellular ligand trafficking in vitro and tumor accumulation in vivo. J Med Chem 48:2778–2789PubMedCrossRefGoogle Scholar
  131. Schumacher T, Hofer S, Good S, Reubi JC, Maecke H, Mueller–Brand J et al (2002) Diffusible Brachytherapie mit 90Y–Substanz P bei High Grade Gliomen: Erste Beobachtungen. In: Brink I, Högerle S, Moser E (ed) Nuklearmedizin als Paradigma molekularer Bildgebung. Blackwell, Berlin, p 68Google Scholar
  132. Schuhmacher J, Zhang H, Doll J, Mäcke HR, Matys R, Hauser H, Henze M, Haberkorn U, Eisenhut M (2005) GRP receptor-targeted PET of a rat pancreas carcinoma xenograft in nude mice with a 68Ga-labeled bombesin(6-14) analog. J Nucl Med 46:691–699PubMedGoogle Scholar
  133. Sharkey RM, Goldenberg DM (2005) Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med. 46(suppl 1):115S–127SPubMedGoogle Scholar
  134. Siegrist W, Solca F, Stutz S et al (1989) Characterization of receptors for alpha-melanocyte stimulating hormone on human melanoma cells. Cancer Res 49:6352–6358PubMedGoogle Scholar
  135. Signore A, Annovazzi A, Chianelli M, Corsetti F, Van de Wiele C, Watherhouse RN (2001) Peptide radiopharmaceuticals for diagnosis and therapy. Eur J Nucl Med 28:1555–1565PubMedCrossRefGoogle Scholar
  136. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317PubMedCrossRefGoogle Scholar
  137. Smith CJ, Volkert WA, Hoffman TJ (2005) Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 32:733–740PubMedCrossRefGoogle Scholar
  138. Smith SV (2004) Molecular imaging with copper-64. J Inorg Biochem 98:1874–1901PubMedCrossRefGoogle Scholar
  139. Sprague JE, Peng Y, Sun X, Weisman GR, Wong EH, Achilefu S, Anderson CJ (2004) Preparation and biological evaluation of copper-64-labeled tyr3-octreotate using a cross-bridged macrocyclic chelator. Clin Cancer Res 10:8674–8682PubMedCrossRefGoogle Scholar
  140. Stefanidakis M, Koivunen E (2004) Peptide-mediated delivery of therapeutic and imaging agents into mammalian cells. Curr Pharm Des 10:3033–3044PubMedCrossRefGoogle Scholar
  141. Stein R, Goldenberg DM, Thorpe SR, Basu A, Mattes MJ (1995) Effects of radiolabeling monoclonal antibodies with a residualizing iodine radiolabel on the accretion of radioisotope in tumors. Cancer Res 55:3132–3139PubMedGoogle Scholar
  142. Stolz B, Smith-Jones P, Albert R, Tolcsvai L, Briner U, Ruser G, Macke H, Weckbecker G, Bruns C (1997) Somatostatin analogues for somatostatin-receptor-mediated radiotherapy of cancer. Digestion 57 Suppl 1:17–21CrossRefGoogle Scholar
  143. Tatro JB, Reichlin S (1987) Specific receptors for alpha-melanocyte stimulating hormone are widely distributed in tissues of rodents. Endocrinology 121:1900–1907PubMedCrossRefGoogle Scholar
  144. Tatro JB, Atkins M, Mier JW et al (1990) Melanotropin receptors demonstrated in situ in human melanoma. J Clin Invest 85:1825–1832PubMedCrossRefGoogle Scholar
  145. Thumshirn G, Hersel U, Goodman SL, Kessler H (2003) Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry 9:2717–2725PubMedCrossRefGoogle Scholar
  146. Van Hagen PM, Breeman WAP, Reubi JC, Postema, PTE, van den Anker–Lugtenburg PJ, Kwekkeboom DJ et al (1996) Visualization of the thymus by substance P receptor scintigraphy in man. Eur J Nucl Med 23:1508–1513PubMedCrossRefGoogle Scholar
  147. Velikyan I, Beyer GJ, Langstrom B (2004) Microwave-supported preparation of (68)Ga bioconjugates with high specific Radioactivity. Bioconjug Chem 15:554–560PubMedCrossRefGoogle Scholar
  148. Wank SA, Pisegna JR, de Weerth A (1994) Cholecystokinin receptor family. Molecular cloning, structure, and functional expression in rat, guinea pig, and human. Ann N Y Acad Sci 713: 49–66PubMedCrossRefGoogle Scholar
  149. Waser B, Eltschinger V, Linder K, Nunn A, Reubi JC (2007) Selective in vitro targeting of GRP and NMB receptors in human tumours with the new bombesin tracer 177Lu-AMBA. Eur J Nucl Med Mol Imaging 34:95–100PubMedCrossRefGoogle Scholar
  150. Wester HJ, Schottelius M, Scheidhauer K, Meisetschlager G, Herz M, Rau FC, Reubi JC, Schwaiger M (2003) PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue of octreotide. Eur J Nucl Med Mol Imaging 30:117–122PubMedCrossRefGoogle Scholar
  151. Wester HJ, Schottelius M, Poethko T, Bruus-Jensen K, Schwaiger M (2004) Radiolabeled carbohydrated somatostatin analogs: a review of the current status. Cancer Biother Radiopharm 19(2):231–244PubMedCrossRefGoogle Scholar
  152. Wester HJ, Kessler H (2005) Molecular targeting with peptides or peptide-polymer conjugates: just a question of size? J Nucl Med 46:1940–1945PubMedGoogle Scholar
  153. Wieland HA, Hamilton BS, Krist B, Doods HN (2000) The role of NPY in metabolic homeostasis: Implications for obesity therapy. Expert Opin Investig Drugs 9:1327–1346PubMedCrossRefGoogle Scholar
  154. Wild D, Schmitt JS, Ginj M, Macke HR, Bernard BF, Krenning E et al (2003) DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging 30:1338–1347PubMedCrossRefGoogle Scholar
  155. Wild D, Béhé M, Wicki A, Christofori G, Waser B, Gotthardt M et al (2005a) Preclinical evaluation of an In–111 labeled Exendin-4 derivative, a very promising ligand for glucagons-like peptide-1 (GLP-1) receptor targeting. Mol Imaging 4:328Google Scholar
  156. Wild D, Macke HR, Waser B, Reubi JC, Ginj M, Rasch H, Muller-Brand J, Hofmann M (2005b) 68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging 32:724PubMedCrossRefGoogle Scholar
  157. Winter PM, Morawski AM, Caruthers SD et al (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108: 2270–2274PubMedCrossRefGoogle Scholar
  158. Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S et al (2005) MicroPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 46: 1707–1718PubMedGoogle Scholar
  159. Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, Chen X (2006) Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. J Nucl Med 47:113–121PubMedGoogle Scholar
  160. Zinn KR, Buchsbaum DJ, Chaudhuri T et al (2000) Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high affinity peptide radiolabeled with 99mTc or 188Re. J Nucl Med41:887–895Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of Nuclear MedicineTechnische Universität MünchenMünchenGermany

Personalised recommendations