Environment-sensitive and Enzyme-sensitive MR Contrast Agents

  • Manuel Querol
  • Alexei BogdanovJr.Email author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 185/2)


The majority of approved MR contrast agents belong to the class of paramagnetic chelates. These small molecules are uniquely suited to respond to changes in the microenvironment in vivo. These contrast agents can also function as substrates for several classes of enzymes. In both cases, the chelates can be designed in a way that the relaxivity — i.e., the ability of chelated paramagnetic metal cations to shorten the relaxation times of water — is directly affected by changes in the microenvironment. This chapter summarizes a variety of MR contrast agent designs that enable “sensing” of metal cations, pH and enzymatic activity.


Contrast Agent Human Serum Albumin Paramagnetic Center Magnetic Resonance Imaging Contrast Agent High Relaxivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aime S, Ascenzi P et al (1995) Molecular recognition of R- and T-states of human adult hemoglobin by a paramagnetic Gd (III) complex by means of the measurement of solvent water proton relaxation rate. J Am Chem Soc 117(36):9365–9366CrossRefGoogle Scholar
  2. Aime S, Botta M et al (1991) Inclusion complexes between b-cyclodextrin and b-benzyloxy-a-propionic derivatives of paramagnetic DOTA- and DTPA-gadolinium (III) complexes. Magn Reson Chem 29(9): 923–927CrossRefGoogle Scholar
  3. Aime S, Botta M et al (1993) Paramagnetic gadolinium (III)-iron (III) heterobimetallic complexes of DTPA-bis-salicylamide. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 49A(9):1315–1322Google Scholar
  4. Aime S, Botta M et al (1996) A new ytterbium chelate as contrast agent in chemical shift imaging and temperature sensitive probe for MR spectroscopy. Magn Reson Med 35(5):648–651PubMedCrossRefGoogle Scholar
  5. Aime S, Botta M et al (1997) Synthesis and NMR studies of three pyridine-containing triaza macrocyclic triacetate ligands and their complexes with lanthanide ions. Inorg Chem 36(14): 2992–3000PubMedCrossRefGoogle Scholar
  6. Aime S, Botta M et al (1999a) 1H and 17O-NMR relaxometric investigations of paramagnetic contrast agents for MRI. Clues for higher relaxivities. Coord Chem Rev 185-186:321–333CrossRefGoogle Scholar
  7. Aime S, Botta M et al (1999b) Prototropic and water-exchange processes in aqueous solutions of Gd (III) chelates. Accounts Chem Res 32(11):941–949CrossRefGoogle Scholar
  8. Aime S, Botta M et al (1999c) Contrast agents for magnetic resonance imaging: a novel route to enhanced relaxivities based on the interaction of a GdIII chelate with poly-b-cyclodextrins. Chem Eur J 5(4):1253–1260CrossRefGoogle Scholar
  9. Aime S, Botta M et al (1999d) Novel paramagnetic macromolecular complexes derived from the linkage of a macrocyclic Gd (III) complex to polyamino acids through a squaric acid moiety. Bioconj Chem 10(2):192–199CrossRefGoogle Scholar
  10. Aime S, Botta M et al (2000a) [GdPCP2A(H(2)O)(2)](-): a paramagnetic contrast agent designed for improved applications in magnetic resonance imaging. J Med Chem 43(21):4017–4024PubMedCrossRefGoogle Scholar
  11. Aime S, Botta M et al (2000b) A p(O2)-responsive MRI contrast agent based on the redox switch of manganese (II/III)-porphyrin complexes. Ang Chem, Intl Ed 39(4):747–750CrossRefGoogle Scholar
  12. Aime S, Cabella C et al (2002) Insights into the use of paramagnetic Gd (III) complexes in MR-molecular imaging investigations. J Magn Res Imag 16(4):394–406CrossRefGoogle Scholar
  13. Aime S, Cavallotti C et al (2004) Mannich reaction as a new route to pyridine-based polyaminocarboxylic ligands. Org Lett 6(8):1201–1204PubMedCrossRefGoogle Scholar
  14. Aime S, Fasano M et al (1998) Lanthanide (III) chelates for NMR biomedical applications. Chem Soc Rev 27(1):19–29CrossRefGoogle Scholar
  15. Andre JP, Toth E et al (1999) High relaxivity for monomeric Gd(DOTA)-based MRI contrast agents, thanks to micellar self organization. Chem Eur J 5(10):2977–2983CrossRefGoogle Scholar
  16. Artemov D, Bhujwalla ZM et al (2004) Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Curr Pharm Biotechnol 5(6):485–494PubMedCrossRefGoogle Scholar
  17. Bogdanov A Jr, Matuszewski L et al (2002) Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging 1(1):16–23PubMedCrossRefGoogle Scholar
  18. Brennan ML, Penn MS et al (2003) Prognostic value of myeloperoxidase in patients with chest pain. New England J Med 349(17):1595–1604CrossRefGoogle Scholar
  19. Bruce JI, Dickins RS et al (2000) The selectivity of reversible oxy-anion binding in aqueous solution at a chiral europium and terbium center: signaling of carbonate chelation by changes in the form and circular polarization of luminescence emission. J Am Chem Soc 122(40): 9674–9684CrossRefGoogle Scholar
  20. Brucher E, Sherry AD (2001) Stability and toxicity of contrast agents. In: Merbach AE, Toth E (eds) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester, pp 243–281Google Scholar
  21. Burai L, Toth E et al (2000) Solution and solid-state characterization of Eu (II) chelates: a possible route towards redox responsive MRI contrast agents. Chemistry 6(20):3761–3770PubMedCrossRefGoogle Scholar
  22. Burai L, Scopelliti R et al (2002) EuII-cryptate with optimal water exchange and electronic relaxation: a synthon for potential pO2 responsive macromolecular MRI contrast agents. Chem Commun (20): 2366–2367CrossRefGoogle Scholar
  23. Caravan P, Ellison JJ et al (1999) Gadolinium (III) Chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99(9):2293–2352PubMedCrossRefGoogle Scholar
  24. Caravan P, Zhang Z et al (2001) Paradigms for increasing the relaxivity of MRI contrast agents. Abstracts of Papers, 222nd ACS National Meeting, Chicago, August 26-30, 2001, INOR-213Google Scholar
  25. Caravan P (2003) Targeted molecular imaging with MRI. Abstracts of Papers, 226th ACS National Meeting, New York, September 7–11, 2003, INOR-541Google Scholar
  26. Chen JW, Pham W et al (2004) Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis. Magn Reson Med 52(5):1021–1028PubMedCrossRefGoogle Scholar
  27. Clarke SE, Weinmann HJ et al (2000) Comparison of two blood pool contrast agents for 0.5-T MR angiography: experimental study in rabbits. Radiology 214(3):787–794PubMedGoogle Scholar
  28. Comblin V, Gilsoul D et al (1999) Designing new MRI contrast agents: a coordination chemistry challenge. Coordination Chem Rev 185–186:451–470CrossRefGoogle Scholar
  29. Costa J, Ruloff R et al (2005) Rigid MIIL2Gd2III (M = Fe, Ru) complexes of a terpyridine-based heteroditopic chelate: a class of candidates for MRI contrast agents. J Am Chem Soc 127(14):5147–5157PubMedCrossRefGoogle Scholar
  30. Curtet C, Maton F et al (1998) Polylysine-Gd-DTPAn and polylysine-Gd-DOTAn coupled to anti-CEA F(ab’)2 fragments as potential immunocontrast agents. Relaxometry, biodistribution, and magnetic resonance imaging in nude mice grafted with human colorectal carcinoma. Invest Radiol 33(10):752–761CrossRefGoogle Scholar
  31. Dong Q, Hurst DR et al (1998) Magnetic resonance angiography with gadomer-17. An animal study original investigation. Invest Radiol 33(9):699–708PubMedCrossRefGoogle Scholar
  32. Duimstra JA, Femia FJ et al (2005) A gadolinium chelate for detection of beta-glucuronidase: a self-immolative approach. J Am Chem Soc 127(37):12847–12855PubMedCrossRefGoogle Scholar
  33. Fossheim SL, Fahlvik AK et al (1998) Paramagnetic liposomes as MRI contrast agents: influence of liposomal physicochemical properties on the in vitro relaxivity. Mag Reson Imag 17(1): 83–89CrossRefGoogle Scholar
  34. Fossheim SL, Il’yasov KA et al. (2000) Thermosensitive paramagnetic liposomes for temperature control during MR imaging-guided hyperthermia: in vitro feasibility studies. Acad Radiol 7(12):1107–1115PubMedCrossRefGoogle Scholar
  35. Frias JC, Williams KJ et al (2004) Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 126(50):16316–16317PubMedCrossRefGoogle Scholar
  36. Gries H, Rosember D et al (1982). Paramagnetische Komplexsalze deren Herstellung and Verwendung bei der NMR-Diagnostik.EP 0 071 564 A1Google Scholar
  37. Grynkiewicz G, Poenie M et al (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450PubMedGoogle Scholar
  38. Hall J, Haener R et al (1998) Relaxometric and luminescence behavior of triaquahexaazamacrocyclic complexes, the gadolinium complex displaying a high relaxivity with a pronounced pH dependence. New J Chem 22(6):627–631CrossRefGoogle Scholar
  39. Hanaoka K, Kikuchi K et al (2002) Design and synthesis of a novel magnetic resonance imaging contrast agent for selective sensing of zinc ion. Chem Biol 9(9):1027–1032PubMedCrossRefGoogle Scholar
  40. Hovland R, Glogard C et al (2001) Gadolinium DO3A derivatives mimicking phospholipids; preparation and in vitro evaluation as pH responsive MRI contrast agents. J Chem Soc, Perkin Trans 2 (6):929–933Google Scholar
  41. Jacques V, Desreux JF (2002) In: Krause W (ed) Contrast agents I. Springer, Heidelberg Berlin New YorkGoogle Scholar
  42. Kornguth S, Anderson M et al (1990) Glioblastoma multiforme: MR imaging at 1.5 and 9.4 T after injection of polylysine-DTPA-Gd in rats. AJNR Am J Neuroradiol 11(2):313–318PubMedGoogle Scholar
  43. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87(5):901–927CrossRefGoogle Scholar
  44. Lauffer RB (1990a) Magnetic resonance contrast media: principles and progress. Magn Reson Q 6(2):65–84PubMedGoogle Scholar
  45. Lauffer RB (1990b) Mechanisms of magnetic resonance contrast enhancement by relaxivity and magnetic susceptibility agents. Invest Radiol 25 Suppl 1:S32–S33PubMedGoogle Scholar
  46. Lauffer RB (1991) Targeted relaxation enhancement agents for MRI. Magn Reson Med 22(2): 339–342PubMedCrossRefGoogle Scholar
  47. Lauffer RB, McMurry TJ et al (1997). Bioactivated diagnostic imaging contrast agents. Application: WO, (Epix Medical, USA)Google Scholar
  48. Li W-h, Fraser SE et al (1999) A calcium-sensitive magnetic resonance imaging contrast agent. J Am Chem Soc 121(6):1413–1414CrossRefGoogle Scholar
  49. Li W-h, Parigi G et al (2002) Mechanistic studies of a calcium-dependent MRI contrast agent. Inorg Chem 41(15):4018–4024CrossRefGoogle Scholar
  50. Livramento JB, Toth E et al (2005) High relaxivity confined to a small molecular space: a metallostar-based, potential MRI contrast agent. Angew Chem Int Ed Engl 44(10):1480–1484PubMedCrossRefGoogle Scholar
  51. Lokling KE, Fossheim SL et al (2001) pH-sensitive paramagnetic liposomes as MRI contrast agents: in vitro feasibility studies. Mag Reson Imag 19(5):731–738CrossRefGoogle Scholar
  52. Louie AY, Huber MM et al. (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotech 18(3):321–325CrossRefGoogle Scholar
  53. Louie AY, Meade TJ (2000) Recent advances in MRI: novel contrast agents shed light on in vivo biochemistry. Trends Biochem Sci, pp 7–11Google Scholar
  54. Lowe MP, Parker D et al (2001) pH-dependent modulation of relaxivity and luminescence in macrocyclic gadolinium and europium complexes based on reversible intramolecular sulfonamide ligation. J Am Chem Soc 123(31):7601–7609PubMedCrossRefGoogle Scholar
  55. Marchal G, Bosmans H et al (1990) MR angiography with gadopentetate dimeglumine-polylysine: evaluation in rabbits. AJR Am J Roentgenol 155(2):407–411PubMedGoogle Scholar
  56. Meade TJ, Taylor AK, Bull SR (2003) New magnetic resonance contrast agents as biochemical reporters. Curr Opin Neurobiol 13(5):597–602PubMedCrossRefGoogle Scholar
  57. Merbach AE, Toth E (2001) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, ChichesterGoogle Scholar
  58. Mikawa M, Miwa N et al (2000) Gd(3+)-loaded polyion complex for pH depiction with magnetic resonance imaging. J Biomed Mater Res 49(3):390–305PubMedCrossRefGoogle Scholar
  59. Moats RA, Fraser SE et al (1997) A “smart” magnetic resonance imaging agent that reports on specific enzymic activity. Angew Chem, Int Ed 36(7):726–728CrossRefGoogle Scholar
  60. Nivorozhkin A L, Kolodziej AF et al (2001) Enzyme-activated Gd3+ magnetic resonance imaging contrast agents with a prominent receptor-induced magnetization enhancement. Angew Chem, Int Ed 40(15):2903–2906CrossRefGoogle Scholar
  61. Parker D, Williams JAG (1996) Getting exited about lanthanide complexation chemistry. J Chem Soc, Dalton Transactions (18):3613–3628Google Scholar
  62. Querol M, Chen JW et al (2005) DTPA-bisamide-based MR sensor agents for peroxidase imaging. Org Lett 7(9):1719–1722PubMedCrossRefGoogle Scholar
  63. Sipkins DA, Cheresh DA et al (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4(5):623–626PubMedCrossRefGoogle Scholar
  64. Toth E, Helm L et al (2002) Relaxivity of MRI contrast agents. Top Curr Chem 221:61–101CrossRefGoogle Scholar
  65. Toth E, Bolskar RD et al (2005) Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 127(2):799–805PubMedCrossRefGoogle Scholar
  66. Van Hecke P, Marchal G et al. (1991) NMR imaging study of the pharmacodynamics of polylysine-gadolinium-DTPA in the rabbit and the rat. Magn Reson Imaging 9(3):313–321PubMedCrossRefGoogle Scholar
  67. Wang SC, Wikstrom MG et al (1990) Evaluation of Gd-DTPA-labeled dextran as an intravascular MR contrast agent: imaging characteristics in normal rat tissues. Radiology 175(2):483–488PubMedGoogle Scholar
  68. Woods M, Zhang S et al (2003) pH-sensitive modulation of the second hydration sphere in lanthanide (III) tetraamide-DOTA complexes: a novel approach to smart MR contrast media. Chem Eur J 9(19):4634–4640CrossRefGoogle Scholar
  69. Woods M, Kiefer GE et al (2004) Synthesis, relaxometric and photophysical properties of a new pH-responsive MRI contrast agent: the effect of other ligating groups on dissociation of a p-nitrophenolic pendant arm. J Am Chem Soc 126(30):9248–9256PubMedCrossRefGoogle Scholar
  70. Zhang S, Wu K et al (1999) A novel pH-sensitive MRI contrast agent. Angew Chem, Int Ed 38(21):3192–3194CrossRefGoogle Scholar
  71. Zhang S, Merritt M et al (2003) PARACEST agents: modulating MRI contrast via water proton exchange. Accounts of Chem Res 36(10):783–790CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.S2-808 Department of RadiologyUMASS Medical SchoolWorcesterUSA

Personalised recommendations