Advertisement

PET and SPECT

  • Uwe Haberkorn
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 185/2)

Abstract

Assessment of gene function following the completion of human genome sequencing may be done using radionuclide imaging procedures. These procedures are needed for the evaluation of genetically manipulated animals or newly designed biomolecules which require a thorough understanding of physiology, biochemistry and pharmacology. The experimental approaches will involve many new technologies, including in-vivo imaging with SPECT and PET. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers or using in-vivo reporter genes, such as genes encoding enzymes, receptors, antigens or transporters. Visualization of in-vivo reporter gene expression can be done using radiolabeled substrates, antibodies or ligands. Combinations of specific promoters and in-vivo reporter genes may deliver information about the regulation of the corresponding genes. Furthermore, protein-protein interactions and the activation of signal transduction pathways may be visualized noninvasively. The role of radiolabeled antisense molecules for the analysis of mRNA content has to be investigated. However, possible applications are therapeutic interventions using triplex oligonucleotides with therapeutic isotopes, which can be brought near to specific DNA sequences to induce DNA strand breaks at selected loci.

After the identification of new genes, functional information is required to investigate the role of these genes in living organisms. This can be done by analysis of gene expression, protein-protein interaction or the biodistribution of new molecules and may result in new diagnostic and therapeutic procedures, which include visualization of and interference with gene transcription, and the development of new biomolecules to be used for diagnosis and treatment. Furthermore, the characterization of tumor cell-specific properties allows the design of new treatment modalities, such as gene therapy, which circumvent resistance mechanisms towards conventional chemotherapeutic drugs.

Keywords

Positron Emission Tomography MIBG Uptake Herpes Simplex Virus Thymidine Kinase Iodide Uptake Sodium Iodide Symporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alauddin MM, Shahinian A, Kundu RK, Gordon EM, Conti PS (1999) Evaluation of 9-[(3-18F-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG) in vitro and in vivo as a probe for PET imaging of gene incorporation and expression in tumors. Nucl Med Biol 26:371–376PubMedCrossRefGoogle Scholar
  2. Altmann A, Kissel M, Zitzmann S et al (2003) Increased MIBG uptake after transfer of the human norepinephrine transporter gene in rat hepatoma. J Nucl Med 44:973–980PubMedGoogle Scholar
  3. Altmann A, Schulz RB, Glensch G, Eskerski H, Zitzmann S, Eisenhut M, Haberkorn U (2005) Effects of Pax8 and TTF-1 Thyroid transcription factor gene transfer in hepatoma cells: imaging of functional protein-protein interaction and iodide uptake. J Nucl Med 46:831–839PubMedGoogle Scholar
  4. Berman M, Hoff E, Barandes M (1968) Iodine kinetics in man: a model. J Clin Endocrinol Metab 28:1–14PubMedCrossRefGoogle Scholar
  5. Bogdanov A, Petherick P, Marecos E, Weissleder R (1997) In vivo localization of diglycylcysteine-bearing synthetic peptides by nuclear imaging of oxotechnetate transchelation. Nucl Med Biol 24:739–742PubMedCrossRefGoogle Scholar
  6. Bogdanov A, Simonova M, Weissleder R (1998) Design of metal-binding green fluorescent protein variants. Biochim Biophys Acta 1397:56–64PubMedGoogle Scholar
  7. Bomanji J, Levison DA, Flatman WD et al (1987) Uptake of iodine-123 MIBG by pheochromocytomas, paragangliomas, and neuroblastomas: a histopathological comparison. J Nucl Med 28:973–978PubMedGoogle Scholar
  8. Boland A, Ricard M, Opolon P, Bidart JM, Yeh P, Filetti S, Schlumberger M, Perricaudet M (2000) Adenovirus-mediated transfer of the thyroid sodium/Iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 60:3484–3492PubMedGoogle Scholar
  9. Boyd M, Cunningham SH, Brown MM, Mairs RJ, Wheldon TE (1999) Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine. Gene Ther 6:1147–1152PubMedCrossRefGoogle Scholar
  10. Cammilleri S, Sangrajrang S, Perdereau B, Brixy F, Calvo F, Bazin H, Magdelenat H (1996) Biodistribution of iodine-125 tyramine transforming growth factor β antisense oligonucleotide in athymic mice with a human mammary tumor xenograft following intratumoral injection. Eur J Nucl Med 23:448–452PubMedCrossRefGoogle Scholar
  11. Carlin S et al (2000) Experimental targeted radioiodide therapy following transfection of the sodium iodide symporter gene: effect on clonogenicity in both two-and three-dimensional models. Cancer Gene Ther 7:1529–1536PubMedCrossRefGoogle Scholar
  12. Cho JY, Xing S, Liu X, Buckwalter TLF, Hwa L, Sferra TJ, Chiu IM, Jhiang SM (2000) Expression and activity of human Na + ∕I-symporter in human glioma cells by adenovirus-mediated gene delivery. Gene Ther 7:740–749PubMedCrossRefGoogle Scholar
  13. Claverie JM (2001) What if there are only 30,000 human genes? Science 291:1255–1257PubMedCrossRefGoogle Scholar
  14. Dadachova E et al (2002) Rhenium-188 as an alternative to Iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS). Nucl Med Biol 29:13–18PubMedCrossRefGoogle Scholar
  15. Dewanjee MK, Ghafouripour AK, Kapadvanjwala M, Dewanjee S, Serafini AN, Lopez DM, Sfakianakis GN (1994) Noninvasive imaging of c-myc oncogene messenger RNA with indium-111-antisense probes in a mammary tumor-bearing mouse model. J Nucl Med 35:1054–1063PubMedGoogle Scholar
  16. de Vries EF, van Waarde A, Harmsen MC, Mulder NH, Vaalburg W, Hospers GA (2000) [11C]FMAU and [18F]FHPG as PET tracers for herpes simplex virus thymidine kinase enzyme activity and human cytomegalovirus infections. Nucl Med Biol 27:113–119PubMedCrossRefGoogle Scholar
  17. Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, Wu L, Green LA, Bauer E, MacLaren DC, Nguyen K, Berk AJ, Cherry SR, Herschman HR (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci U S A 96:2333–2338PubMedCrossRefGoogle Scholar
  18. Gambhir SS, Bauer E, Black ME et al (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A 97:2785–2790PubMedCrossRefGoogle Scholar
  19. Gati WP, Misra HK, Knaus EE, Wiebe LI (1984) Structural modifications at the 2 and 3 positions of some pyrimidine nucleosides as determinants of their interaction with the mouse erythrocyte nucleoside transporter Biochem Pharmacol 33:3325–3331Google Scholar
  20. (6) Germann C, Shields AF, Grierson JR, Morr I, Haberkorn U (1998) 5-Fluoro-1-(2-deoxy-2-fluoro-ß-D-ribofuranosyl)uracil trapping in Morris hepatoma cells expressing the herpes simplex virus thymidine kinase gene. J Nucl Med 39:1418–1423PubMedGoogle Scholar
  21. Glowniak JV, Kilty JE, Amara SG, Hoffman BJ, Turner FE (1993) Evaluation of metaiodobenzylguanidine uptake by the norepinephrine, dopamine and serotonin transporters J Nucl Med 34:1140-1146PubMedGoogle Scholar
  22. Guo J, McLachlan SM, Hutchinson S, Rapoport B (1998) The greater glycan content of recombinant human thyroid peroxidase of mammalian than of insect cell origin facilitates purification to homogeneity of enzymatically protein remaining soluble at high concentration. Endocrinology 139:999–1005PubMedCrossRefGoogle Scholar
  23. Haberkorn U (1999) Monitoring of gene transfer for cancer therapy with radioactive isotopes. Ann Nucl Med 13:369–377PubMedCrossRefGoogle Scholar
  24. Haberkorn U, Altmann A (2003) Noninvasive imaging of protein-protein interaction in living organisms. Trends Biotechnol 21:241–243PubMedCrossRefGoogle Scholar
  25. Haberkorn U, Oberdorfer F, Gebert J et al (1996) Monitoring of gene therapy with cytosine deaminase: in vitro studies using 3H-5-fluorocytosine. J Nucl Med 37:87–94PubMedGoogle Scholar
  26. Haberkorn U, Altmann A, Morr I et al (1997) Gene therapy with herpes simplex virus thymidine kinase in hepatoma cells: uptake of specific substrates. J Nucl Med 38:287–294PubMedGoogle Scholar
  27. Haberkorn U, Khazaie K, Morr I, Altmann A, Müller M, Kaick G. van (1998) Ganciclovir uptake in human mammary carcinoma cells expressing herpes simplex virus thymidine kinase. Nucl Med Biol 25:367–373PubMedCrossRefGoogle Scholar
  28. Haberkorn U, Altmann A, Jiang S, Morr I, Mahmut M, Eisenhut M (2001a) Iodide uptake in human anaplastic thyroid carcinoma cells after transfer of the human thyroid peroxidase gene. Eur J Nucl Med 28:633–638PubMedCrossRefGoogle Scholar
  29. Haberkorn U, Henze M, Altmann A, Jiang S, Morr I, Mahmut M, Peschke P, Debus J, W. Kübler, Eisenhut M (2001b) Transfer of the human sodium iodide symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med 42:317–325PubMedGoogle Scholar
  30. Haberkorn U, Altmann A, Eisenhut M (2002) Functional genomics and proteomics — the role of nuclear medicine. Eur J Nuc Med 29:115–132CrossRefGoogle Scholar
  31. Haberkorn U, Kinscherf R, Kissel M et al (2003) Enhanced iodide transport after transfer of the human sodium iodide symporter gene is associated with lack of retention and low absorbed dose. Gene Ther 10:774–780PubMedCrossRefGoogle Scholar
  32. Hannon GJ (2002) RNA interference. Nature 418:244–251PubMedCrossRefGoogle Scholar
  33. Haubner R, Avril N, Hantzopoulos PA, Gansbacher B, Schwaiger M (2000) In vivo imaging of herpes simplex virus type 1 thymidine kinase gene expression: early kinetics of radiolabelled FIAU. Eur J Nucl Med 27:283–291PubMedCrossRefGoogle Scholar
  34. Hidaka Y, Hayashi Y, Fisfalen ME, Suzuki S, Takeda T, Refetoff S, DeGroot LJ (1996) Expression of thyroid peroxidase in EBV-transformed B cell lines using adenovirus. Thyroid 6:23–28PubMedCrossRefGoogle Scholar
  35. Huang M et al (2001) Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer. Cancer Gene Ther 8:612–618PubMedCrossRefGoogle Scholar
  36. Hustinx R, Shiue CY, Alavi A, McDonald D, Shiue GG, Zhuang H, Lanuti M, Lambright E, Karp JS, Eck S (2001) Imaging in vivo herpes simplex virus thymidine kinase gene transfer to tumour-bearing rodents using positron emission tomography and (18F)FHPG. Eur J Nucl Med 28:5–12PubMedCrossRefGoogle Scholar
  37. Iwashina T, Tovell DR, Xu L, Tyrrell DL, Knaus EE, Wiebe LI (1988) Synthesis and antiviral activity of IVFRU, a potential probe for the non-invasive diagnosis of herpes simplex encephalitis. Drug Des Deliv 3:309–321PubMedGoogle Scholar
  38. Iyer M et al (2001) Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci U S A 98:14595–14600PubMedCrossRefGoogle Scholar
  39. Kaufman KD, Filetti S, Seto P, Rapoport B (1990) Recombinant human thyroid peroxidase generated in eukaryotic cells: a source of specific antigen for the immunological assay of antimicrosomal antibodies in the sera of patients with autoimmune thyroid disease. J Clin Endocrinol Metab 70:724–728PubMedCrossRefGoogle Scholar
  40. Kimura S, Kotani T, Ohtaki S, Aoyama T (1989) cDNA-directed expression of human thyroid peroxidase. FEBS Lett 250:377–380PubMedCrossRefGoogle Scholar
  41. Kobori N, Imahori Y, Mineura K, Ueda S, Fujii R (1999) Visualization of mRNA expression in CNS using 11C-labeled phosphorothioate oligodeoxynucleotide. Neuroreport 10:2971–2974PubMedCrossRefGoogle Scholar
  42. La Perle KMD et al (2002) In vivo expression and function of the sodium iodide symporter following gene transfer in the MATLyLu rat model of metastatic prostate cancer. Prostate 50:170–178PubMedCrossRefGoogle Scholar
  43. Luker GD et al (2002) Noninvasive imaging of protein-protein interactions in living animals. Proc Natl Acad Sci U S A 99:6961–6966PubMedCrossRefGoogle Scholar
  44. MacLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791PubMedCrossRefGoogle Scholar
  45. Mahony WB, Domin BA, McConnel RT, Zimmerman TP (1988) Acyclovir transport into human erythrocytes. J Biol Chem 263:9285–9291PubMedGoogle Scholar
  46. Mandell RB, Mandell LZ, Link CJ (1999) Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res 59:661–668PubMedGoogle Scholar
  47. Mukhopadhyay T, Tainsky M, Cavender AC, Roth JA (1991) Specific inhibition of K-ras expression and tumorigenicity of lung cancer cells by antisense RNA. Cancer Res 51:1744–1748PubMedGoogle Scholar
  48. Nakamoto Y et al (2000) Establishment and characterization of a breast cancer cell line expressing Na + ∕I-symporters for radioiodide concentrator gene therapy. J Nucl Med 41:1898–1904PubMedGoogle Scholar
  49. Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354PubMedCrossRefGoogle Scholar
  50. Paulmurugan R, Umezawa Y, Gambhir SS (2002) Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci U S A 99:15608–15613PubMedCrossRefGoogle Scholar
  51. Petrich T et al (2002) Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium iodide symporter. Eur J Nucl Med 29:842–854CrossRefGoogle Scholar
  52. ( Raben D, Buchsbaum DJ, Khazaeli MB et al (1996) Enhancement of radiolabeled antibody binding and tumor localization through adenoviral transduction of the human carcinoembryonic antigen gene. Gene Ther 3:567–580PubMedGoogle Scholar
  53. Ray P et al (2002) Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc Natl Acad Sci U S A 99:3105–3110PubMedCrossRefGoogle Scholar
  54. Saito Y, Price R, Rottenberg DA, Fox JJ, Su TL, Watanabe KA, Philipps FA (1982) Quantitative autoradiographic mapping of herpes simplex virus encephalitis with radiolabeled antiviral drug. Science 217:1151–1153PubMedCrossRefGoogle Scholar
  55. Schellingerhout D, Bogdanov A Jr, Marecos E, Spear M, Breakefield X, Weissleder R (1998) Mapping the in vivo distribution of herpes simplex virions. Hum Gene Ther 9:1543–1549PubMedCrossRefGoogle Scholar
  56. Shi N, Boado RJ, Pardridge WM (2000) Antisense imaging of gene expression in the brain in vivo. Proc Natl Acad Sci U S A 97:14709–14714PubMedCrossRefGoogle Scholar
  57. Shimura H et al (1997) Iodide uptake and experimental 131J therapy in transplanted undifferentiated thyroid cancer cells expressing the Na + ∕I-symporter gene. Endocrinology 138:4493–4496PubMedCrossRefGoogle Scholar
  58. Sieger S, Jiang S, Schönsiegel F et al (2003) Tumour specific activation of the Sodium/Iodide Symporter Gene under Control of the Glucose Transporter Gene 1 Promoter (GTI-1.3). Eur J Nucl Med 30:748–756Google Scholar
  59. Simonova M, Weissleder R, Sergeyev N, Vilissova N, Bogdanov A (1999) Targeting of green fluorescent protein expression to the cell surface. Biochem Biophys Res Commun 262: 638–642PubMedCrossRefGoogle Scholar
  60. Smit JW et al (2000) Reestablishment of in vitro and in vivo iodide uptake by transfection of the human sodium iodide symporter (hNIS) in a hNIS defective human thyroid carcinoma cell line. Thyroid 10:939–943PubMedCrossRefGoogle Scholar
  61. Smit JWA et al (2002) Iodide kinetics and experimental 131I therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line. J Clin Endocrinol Metab 87:1247–1253PubMedCrossRefGoogle Scholar
  62. Spitzweg C, Zhang S, Bergert ER et al (1999) Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines. Cancer Res 59:2136–2141PubMedGoogle Scholar
  63. Spitzweg C et al (2000) Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 60:6526–6530PubMedGoogle Scholar
  64. Spitzweg C et al (2001) In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther 8:1524–1531PubMedCrossRefGoogle Scholar
  65. Tavitian B, Terrazzino S, Kühnast B, Marzabal S, Stettler O, Dolle F, Deverre JR, Jobert A, Hinnen F, Bendriem B, Crouzel C, Di Giamberardino L (1998) In vivo imaging of oligonucleotides with positron emission tomography. Nat Med 4:467–471PubMedCrossRefGoogle Scholar
  66. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, Blasberg RG (1995) Imaging the expression of transfected genes in vivo. Cancer Res 55:6126–6132PubMedGoogle Scholar
  67. Tjuvajev JG, Avril N, Oku T et al (1998) Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 58:4333–4341PubMedGoogle Scholar
  68. Urbain JL, Shore SK, Vekemans MC, Cosenza SC, DeRiel K, Patel GV, Charkes ND, Malmud LS, Reddy EP (1995) Scintigraphic imaging of oncogenes with antisense probes: does it make sense? Eur J Nucl Med 22:499–504PubMedGoogle Scholar
  69. (79) Watanabe N, Sawai H, Endo K, Shinozuka K, Ozaki H, Tanada S, Murata H, Sasaki Y (1999) Labeling of phosphorothioate antisense oligonucleotides with yttrium-90. Nucl Med Biol 26:239–243PubMedCrossRefGoogle Scholar
  70. Weissleder R, Simonova M, Bogdanova A et al (1997) MR imaging and scintigraphy of gene expression through melanin induction. Radiology 204:425–429PubMedGoogle Scholar
  71. Wiebe LI, Morin KW, Knaus EE (1997) Radiopharmaceuticals to monitor gene transfer. Q J Nucl Med. 41:79–89PubMedGoogle Scholar
  72. Wiebe LI, Knaus EE, Morin KW (1999) Radiolabelled pyrimidine nucleosides to monitor the expression of HSV-1 thymidine kinase in gene therapy. Nucleosides Nucleotides 18: 1065–1066PubMedCrossRefGoogle Scholar
  73. Woolf TM, Melton DA, Jennings CGB (1992) Specificity of antisense oligonucleotides in vivo. Proc Natl Acad Sci U S A 89:7305–7309PubMedCrossRefGoogle Scholar
  74. Wu JC et al (2001) Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 4:297–306PubMedCrossRefGoogle Scholar
  75. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–285PubMedCrossRefGoogle Scholar
  76. Zinn KR, Douglas JT, Smyth CA, Liu HG, Wu Q, Krasnykh VN, Mountz JD, Curiel DT, Mountz JM (1998) Imaging and tissue biodistribution of 99 mTc-labeled adenovirus knob (serotype 5). Gene Ther 5:798–808PubMedCrossRefGoogle Scholar
  77. Zinn KR, Buchsbaum DJ, Chaudhuri, TR, Mountz JM, Grizzle WE, Rogers-BE (2000) Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high-affinity peptide radiolabeled with 99 mTc or 188Re. J Nucl Med 41:887–895Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Uwe Haberkorn
    • 1
  1. 1.Department of Nuclear MedicineUniversity of HeidelbergHeidelberg

Personalised recommendations