Skip to main content

PET and SPECT

  • Chapter
Molecular Imaging II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 185/2))

Abstract

Assessment of gene function following the completion of human genome sequencing may be done using radionuclide imaging procedures. These procedures are needed for the evaluation of genetically manipulated animals or newly designed biomolecules which require a thorough understanding of physiology, biochemistry and pharmacology. The experimental approaches will involve many new technologies, including in-vivo imaging with SPECT and PET. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers or using in-vivo reporter genes, such as genes encoding enzymes, receptors, antigens or transporters. Visualization of in-vivo reporter gene expression can be done using radiolabeled substrates, antibodies or ligands. Combinations of specific promoters and in-vivo reporter genes may deliver information about the regulation of the corresponding genes. Furthermore, protein-protein interactions and the activation of signal transduction pathways may be visualized noninvasively. The role of radiolabeled antisense molecules for the analysis of mRNA content has to be investigated. However, possible applications are therapeutic interventions using triplex oligonucleotides with therapeutic isotopes, which can be brought near to specific DNA sequences to induce DNA strand breaks at selected loci.

After the identification of new genes, functional information is required to investigate the role of these genes in living organisms. This can be done by analysis of gene expression, protein-protein interaction or the biodistribution of new molecules and may result in new diagnostic and therapeutic procedures, which include visualization of and interference with gene transcription, and the development of new biomolecules to be used for diagnosis and treatment. Furthermore, the characterization of tumor cell-specific properties allows the design of new treatment modalities, such as gene therapy, which circumvent resistance mechanisms towards conventional chemotherapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alauddin MM, Shahinian A, Kundu RK, Gordon EM, Conti PS (1999) Evaluation of 9-[(3-18F-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG) in vitro and in vivo as a probe for PET imaging of gene incorporation and expression in tumors. Nucl Med Biol 26:371–376

    Article  PubMed  CAS  Google Scholar 

  • Altmann A, Kissel M, Zitzmann S et al (2003) Increased MIBG uptake after transfer of the human norepinephrine transporter gene in rat hepatoma. J Nucl Med 44:973–980

    PubMed  CAS  Google Scholar 

  • Altmann A, Schulz RB, Glensch G, Eskerski H, Zitzmann S, Eisenhut M, Haberkorn U (2005) Effects of Pax8 and TTF-1 Thyroid transcription factor gene transfer in hepatoma cells: imaging of functional protein-protein interaction and iodide uptake. J Nucl Med 46:831–839

    PubMed  CAS  Google Scholar 

  • Berman M, Hoff E, Barandes M (1968) Iodine kinetics in man: a model. J Clin Endocrinol Metab 28:1–14

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov A, Petherick P, Marecos E, Weissleder R (1997) In vivo localization of diglycylcysteine-bearing synthetic peptides by nuclear imaging of oxotechnetate transchelation. Nucl Med Biol 24:739–742

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov A, Simonova M, Weissleder R (1998) Design of metal-binding green fluorescent protein variants. Biochim Biophys Acta 1397:56–64

    PubMed  CAS  Google Scholar 

  • Bomanji J, Levison DA, Flatman WD et al (1987) Uptake of iodine-123 MIBG by pheochromocytomas, paragangliomas, and neuroblastomas: a histopathological comparison. J Nucl Med 28:973–978

    PubMed  CAS  Google Scholar 

  • Boland A, Ricard M, Opolon P, Bidart JM, Yeh P, Filetti S, Schlumberger M, Perricaudet M (2000) Adenovirus-mediated transfer of the thyroid sodium/Iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 60:3484–3492

    PubMed  CAS  Google Scholar 

  • Boyd M, Cunningham SH, Brown MM, Mairs RJ, Wheldon TE (1999) Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine. Gene Ther 6:1147–1152

    Article  PubMed  CAS  Google Scholar 

  • Cammilleri S, Sangrajrang S, Perdereau B, Brixy F, Calvo F, Bazin H, Magdelenat H (1996) Biodistribution of iodine-125 tyramine transforming growth factor β antisense oligonucleotide in athymic mice with a human mammary tumor xenograft following intratumoral injection. Eur J Nucl Med 23:448–452

    Article  PubMed  CAS  Google Scholar 

  • Carlin S et al (2000) Experimental targeted radioiodide therapy following transfection of the sodium iodide symporter gene: effect on clonogenicity in both two-and three-dimensional models. Cancer Gene Ther 7:1529–1536

    Article  PubMed  CAS  Google Scholar 

  • Cho JY, Xing S, Liu X, Buckwalter TLF, Hwa L, Sferra TJ, Chiu IM, Jhiang SM (2000) Expression and activity of human Na + ∕I-symporter in human glioma cells by adenovirus-mediated gene delivery. Gene Ther 7:740–749

    Article  PubMed  CAS  Google Scholar 

  • Claverie JM (2001) What if there are only 30,000 human genes? Science 291:1255–1257

    Article  PubMed  CAS  Google Scholar 

  • Dadachova E et al (2002) Rhenium-188 as an alternative to Iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS). Nucl Med Biol 29:13–18

    Article  PubMed  CAS  Google Scholar 

  • Dewanjee MK, Ghafouripour AK, Kapadvanjwala M, Dewanjee S, Serafini AN, Lopez DM, Sfakianakis GN (1994) Noninvasive imaging of c-myc oncogene messenger RNA with indium-111-antisense probes in a mammary tumor-bearing mouse model. J Nucl Med 35:1054–1063

    PubMed  CAS  Google Scholar 

  • de Vries EF, van Waarde A, Harmsen MC, Mulder NH, Vaalburg W, Hospers GA (2000) [11C]FMAU and [18F]FHPG as PET tracers for herpes simplex virus thymidine kinase enzyme activity and human cytomegalovirus infections. Nucl Med Biol 27:113–119

    Article  PubMed  Google Scholar 

  • Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, Wu L, Green LA, Bauer E, MacLaren DC, Nguyen K, Berk AJ, Cherry SR, Herschman HR (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci U S A 96:2333–2338

    Article  PubMed  CAS  Google Scholar 

  • Gambhir SS, Bauer E, Black ME et al (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A 97:2785–2790

    Article  PubMed  CAS  Google Scholar 

  • Gati WP, Misra HK, Knaus EE, Wiebe LI (1984) Structural modifications at the 2′ and 3′ positions of some pyrimidine nucleosides as determinants of their interaction with the mouse erythrocyte nucleoside transporter Biochem Pharmacol 33:3325–3331

    Google Scholar 

  • (6) Germann C, Shields AF, Grierson JR, Morr I, Haberkorn U (1998) 5-Fluoro-1-(2′-deoxy-2′-fluoro-ß-D-ribofuranosyl)uracil trapping in Morris hepatoma cells expressing the herpes simplex virus thymidine kinase gene. J Nucl Med 39:1418–1423

    PubMed  CAS  Google Scholar 

  • Glowniak JV, Kilty JE, Amara SG, Hoffman BJ, Turner FE (1993) Evaluation of metaiodobenzylguanidine uptake by the norepinephrine, dopamine and serotonin transporters J Nucl Med 34:1140-1146

    PubMed  CAS  Google Scholar 

  • Guo J, McLachlan SM, Hutchinson S, Rapoport B (1998) The greater glycan content of recombinant human thyroid peroxidase of mammalian than of insect cell origin facilitates purification to homogeneity of enzymatically protein remaining soluble at high concentration. Endocrinology 139:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Haberkorn U (1999) Monitoring of gene transfer for cancer therapy with radioactive isotopes. Ann Nucl Med 13:369–377

    Article  PubMed  CAS  Google Scholar 

  • Haberkorn U, Altmann A (2003) Noninvasive imaging of protein-protein interaction in living organisms. Trends Biotechnol 21:241–243

    Article  PubMed  CAS  Google Scholar 

  • Haberkorn U, Oberdorfer F, Gebert J et al (1996) Monitoring of gene therapy with cytosine deaminase: in vitro studies using 3H-5-fluorocytosine. J Nucl Med 37:87–94

    PubMed  CAS  Google Scholar 

  • Haberkorn U, Altmann A, Morr I et al (1997) Gene therapy with herpes simplex virus thymidine kinase in hepatoma cells: uptake of specific substrates. J Nucl Med 38:287–294

    PubMed  CAS  Google Scholar 

  • Haberkorn U, Khazaie K, Morr I, Altmann A, Müller M, Kaick G. van (1998) Ganciclovir uptake in human mammary carcinoma cells expressing herpes simplex virus thymidine kinase. Nucl Med Biol 25:367–373

    Article  PubMed  CAS  Google Scholar 

  • Haberkorn U, Altmann A, Jiang S, Morr I, Mahmut M, Eisenhut M (2001a) Iodide uptake in human anaplastic thyroid carcinoma cells after transfer of the human thyroid peroxidase gene. Eur J Nucl Med 28:633–638

    Article  PubMed  CAS  Google Scholar 

  • Haberkorn U, Henze M, Altmann A, Jiang S, Morr I, Mahmut M, Peschke P, Debus J, W. Kübler, Eisenhut M (2001b) Transfer of the human sodium iodide symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med 42:317–325

    PubMed  CAS  Google Scholar 

  • Haberkorn U, Altmann A, Eisenhut M (2002) Functional genomics and proteomics — the role of nuclear medicine. Eur J Nuc Med 29:115–132

    Article  CAS  Google Scholar 

  • Haberkorn U, Kinscherf R, Kissel M et al (2003) Enhanced iodide transport after transfer of the human sodium iodide symporter gene is associated with lack of retention and low absorbed dose. Gene Ther 10:774–780

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  • Haubner R, Avril N, Hantzopoulos PA, Gansbacher B, Schwaiger M (2000) In vivo imaging of herpes simplex virus type 1 thymidine kinase gene expression: early kinetics of radiolabelled FIAU. Eur J Nucl Med 27:283–291

    Article  PubMed  CAS  Google Scholar 

  • Hidaka Y, Hayashi Y, Fisfalen ME, Suzuki S, Takeda T, Refetoff S, DeGroot LJ (1996) Expression of thyroid peroxidase in EBV-transformed B cell lines using adenovirus. Thyroid 6:23–28

    Article  PubMed  CAS  Google Scholar 

  • Huang M et al (2001) Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer. Cancer Gene Ther 8:612–618

    Article  PubMed  CAS  Google Scholar 

  • Hustinx R, Shiue CY, Alavi A, McDonald D, Shiue GG, Zhuang H, Lanuti M, Lambright E, Karp JS, Eck S (2001) Imaging in vivo herpes simplex virus thymidine kinase gene transfer to tumour-bearing rodents using positron emission tomography and (18F)FHPG. Eur J Nucl Med 28:5–12

    Article  PubMed  CAS  Google Scholar 

  • Iwashina T, Tovell DR, Xu L, Tyrrell DL, Knaus EE, Wiebe LI (1988) Synthesis and antiviral activity of IVFRU, a potential probe for the non-invasive diagnosis of herpes simplex encephalitis. Drug Des Deliv 3:309–321

    PubMed  CAS  Google Scholar 

  • Iyer M et al (2001) Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci U S A 98:14595–14600

    Article  PubMed  CAS  Google Scholar 

  • Kaufman KD, Filetti S, Seto P, Rapoport B (1990) Recombinant human thyroid peroxidase generated in eukaryotic cells: a source of specific antigen for the immunological assay of antimicrosomal antibodies in the sera of patients with autoimmune thyroid disease. J Clin Endocrinol Metab 70:724–728

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Kotani T, Ohtaki S, Aoyama T (1989) cDNA-directed expression of human thyroid peroxidase. FEBS Lett 250:377–380

    Article  PubMed  CAS  Google Scholar 

  • Kobori N, Imahori Y, Mineura K, Ueda S, Fujii R (1999) Visualization of mRNA expression in CNS using 11C-labeled phosphorothioate oligodeoxynucleotide. Neuroreport 10:2971–2974

    Article  PubMed  CAS  Google Scholar 

  • La Perle KMD et al (2002) In vivo expression and function of the sodium iodide symporter following gene transfer in the MATLyLu rat model of metastatic prostate cancer. Prostate 50:170–178

    Article  PubMed  CAS  Google Scholar 

  • Luker GD et al (2002) Noninvasive imaging of protein-protein interactions in living animals. Proc Natl Acad Sci U S A 99:6961–6966

    Article  PubMed  CAS  Google Scholar 

  • MacLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791

    Article  PubMed  CAS  Google Scholar 

  • Mahony WB, Domin BA, McConnel RT, Zimmerman TP (1988) Acyclovir transport into human erythrocytes. J Biol Chem 263:9285–9291

    PubMed  CAS  Google Scholar 

  • Mandell RB, Mandell LZ, Link CJ (1999) Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res 59:661–668

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay T, Tainsky M, Cavender AC, Roth JA (1991) Specific inhibition of K-ras expression and tumorigenicity of lung cancer cells by antisense RNA. Cancer Res 51:1744–1748

    PubMed  CAS  Google Scholar 

  • Nakamoto Y et al (2000) Establishment and characterization of a breast cancer cell line expressing Na + ∕I-symporters for radioiodide concentrator gene therapy. J Nucl Med 41:1898–1904

    PubMed  CAS  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354

    Article  PubMed  CAS  Google Scholar 

  • Paulmurugan R, Umezawa Y, Gambhir SS (2002) Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci U S A 99:15608–15613

    Article  PubMed  CAS  Google Scholar 

  • Petrich T et al (2002) Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium iodide symporter. Eur J Nucl Med 29:842–854

    Article  CAS  Google Scholar 

  • ( Raben D, Buchsbaum DJ, Khazaeli MB et al (1996) Enhancement of radiolabeled antibody binding and tumor localization through adenoviral transduction of the human carcinoembryonic antigen gene. Gene Ther 3:567–580

    PubMed  CAS  Google Scholar 

  • Ray P et al (2002) Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc Natl Acad Sci U S A 99:3105–3110

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Price R, Rottenberg DA, Fox JJ, Su TL, Watanabe KA, Philipps FA (1982) Quantitative autoradiographic mapping of herpes simplex virus encephalitis with radiolabeled antiviral drug. Science 217:1151–1153

    Article  PubMed  CAS  Google Scholar 

  • Schellingerhout D, Bogdanov A Jr, Marecos E, Spear M, Breakefield X, Weissleder R (1998) Mapping the in vivo distribution of herpes simplex virions. Hum Gene Ther 9:1543–1549

    Article  PubMed  CAS  Google Scholar 

  • Shi N, Boado RJ, Pardridge WM (2000) Antisense imaging of gene expression in the brain in vivo. Proc Natl Acad Sci U S A 97:14709–14714

    Article  PubMed  CAS  Google Scholar 

  • Shimura H et al (1997) Iodide uptake and experimental 131J therapy in transplanted undifferentiated thyroid cancer cells expressing the Na + ∕I-symporter gene. Endocrinology 138:4493–4496

    Article  PubMed  CAS  Google Scholar 

  • Sieger S, Jiang S, Schönsiegel F et al (2003) Tumour specific activation of the Sodium/Iodide Symporter Gene under Control of the Glucose Transporter Gene 1 Promoter (GTI-1.3). Eur J Nucl Med 30:748–756

    CAS  Google Scholar 

  • Simonova M, Weissleder R, Sergeyev N, Vilissova N, Bogdanov A (1999) Targeting of green fluorescent protein expression to the cell surface. Biochem Biophys Res Commun 262: 638–642

    Article  PubMed  CAS  Google Scholar 

  • Smit JW et al (2000) Reestablishment of in vitro and in vivo iodide uptake by transfection of the human sodium iodide symporter (hNIS) in a hNIS defective human thyroid carcinoma cell line. Thyroid 10:939–943

    Article  PubMed  CAS  Google Scholar 

  • Smit JWA et al (2002) Iodide kinetics and experimental 131I therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line. J Clin Endocrinol Metab 87:1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Spitzweg C, Zhang S, Bergert ER et al (1999) Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines. Cancer Res 59:2136–2141

    PubMed  CAS  Google Scholar 

  • Spitzweg C et al (2000) Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 60:6526–6530

    PubMed  CAS  Google Scholar 

  • Spitzweg C et al (2001) In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther 8:1524–1531

    Article  PubMed  CAS  Google Scholar 

  • Tavitian B, Terrazzino S, Kühnast B, Marzabal S, Stettler O, Dolle F, Deverre JR, Jobert A, Hinnen F, Bendriem B, Crouzel C, Di Giamberardino L (1998) In vivo imaging of oligonucleotides with positron emission tomography. Nat Med 4:467–471

    Article  PubMed  CAS  Google Scholar 

  • Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, Blasberg RG (1995) Imaging the expression of transfected genes in vivo. Cancer Res 55:6126–6132

    PubMed  CAS  Google Scholar 

  • Tjuvajev JG, Avril N, Oku T et al (1998) Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 58:4333–4341

    PubMed  CAS  Google Scholar 

  • Urbain JL, Shore SK, Vekemans MC, Cosenza SC, DeRiel K, Patel GV, Charkes ND, Malmud LS, Reddy EP (1995) Scintigraphic imaging of oncogenes with antisense probes: does it make sense? Eur J Nucl Med 22:499–504

    PubMed  CAS  Google Scholar 

  • (79) Watanabe N, Sawai H, Endo K, Shinozuka K, Ozaki H, Tanada S, Murata H, Sasaki Y (1999) Labeling of phosphorothioate antisense oligonucleotides with yttrium-90. Nucl Med Biol 26:239–243

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R, Simonova M, Bogdanova A et al (1997) MR imaging and scintigraphy of gene expression through melanin induction. Radiology 204:425–429

    PubMed  CAS  Google Scholar 

  • Wiebe LI, Morin KW, Knaus EE (1997) Radiopharmaceuticals to monitor gene transfer. Q J Nucl Med. 41:79–89

    PubMed  CAS  Google Scholar 

  • Wiebe LI, Knaus EE, Morin KW (1999) Radiolabelled pyrimidine nucleosides to monitor the expression of HSV-1 thymidine kinase in gene therapy. Nucleosides Nucleotides 18: 1065–1066

    Article  PubMed  CAS  Google Scholar 

  • Woolf TM, Melton DA, Jennings CGB (1992) Specificity of antisense oligonucleotides in vivo. Proc Natl Acad Sci U S A 89:7305–7309

    Article  PubMed  CAS  Google Scholar 

  • Wu JC et al (2001) Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 4:297–306

    Article  PubMed  CAS  Google Scholar 

  • Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–285

    Article  PubMed  CAS  Google Scholar 

  • Zinn KR, Douglas JT, Smyth CA, Liu HG, Wu Q, Krasnykh VN, Mountz JD, Curiel DT, Mountz JM (1998) Imaging and tissue biodistribution of 99 mTc-labeled adenovirus knob (serotype 5). Gene Ther 5:798–808

    Article  PubMed  CAS  Google Scholar 

  • Zinn KR, Buchsbaum DJ, Chaudhuri, TR, Mountz JM, Grizzle WE, Rogers-BE (2000) Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high-affinity peptide radiolabeled with 99 mTc or 188Re. J Nucl Med 41:887–895

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haberkorn, U. (2008). PET and SPECT. In: Semmler, W., Schwaiger, M. (eds) Molecular Imaging II. Handbook of Experimental Pharmacology, vol 185/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77496-9_2

Download citation

Publish with us

Policies and ethics