Molecular Imaging-guided Gene Therapy of Gliomas

  • Maria A. Rueger
  • Alexandra Winkeler
  • Anne V. Thomas
  • Lutz W. Kracht
  • Andreas H. JacobsEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 185/2)


Gene therapy of patients with glioblastoma using viral and non-viral vectors, which are applied by direct injection or convection-enhanced delivery (CED), appear to be satisfactorily safe. Up to date, only single patients show a significant therapeutic benefit as deduced from single long-term survivors. Non-invasive imaging by PET for the identification of viable target tissue and for assessment of transduction efficiency shall help to identify patients which might benefit from gene therapy, while non-invasive follow-up on treatment responses allows early and dynamic adaptations of treatment options. Therefore, molecular imaging has a critical impact on the development of standardised gene therapy protocols and on efficient and safe vector applications in humans.


Positron Emission Tomography Gene Therapy Herpes Simplex Virus Type Thymidine Kinase Meet Positron Emission Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aboagye EO, Bhujwalla ZM (1999) Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res 59:80–84PubMedGoogle Scholar
  2. Aghi M, Chou TC, Suling K, Breakefield XO, Chiocca A (1999) Multimodal cancer treatment mediated by replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res 59:3861–3865PubMedGoogle Scholar
  3. Alauddin MM, Shahinian A, Gordon EM, Conti PS (2004a) Direct comparison of radiolabeled probes FMAU, FHBG, and FHPG as PET imaging agents for HSV1-tk expression in a human breast cancer model. Mol Imaging 3:76–84PubMedCrossRefGoogle Scholar
  4. Alauddin MM, Shahinian A, Park R, Tohme M, Fissekis JD, Conti PS (2004b) Synthesis and evaluation of 2-deoxy-2-18F-fluoro-5-fluoro-1-beta-D-arabinofuranosyluracil as a potential PET imaging agent for suicide gene expression. J Nucl Med 45:2063–2069PubMedGoogle Scholar
  5. Barker FG, Chang SM, Valk PE, Pounds TR, Prados MD (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79:115–126PubMedCrossRefGoogle Scholar
  6. Blasberg RG, Gelovani J (2002) Molecular-genetic imaging: a nuclear medicine-based perspective. Mol Imaging 1:280–300PubMedCrossRefGoogle Scholar
  7. Brock CS, Young H, O’Reilly SM et al (2000) Early evaluation of tumour metabolic response using [18F]fluorodeoxyglucose and positron emission tomography: a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. Br J Cancer 82:608–615PubMedCrossRefGoogle Scholar
  8. Chao ST, Suh JH, Raja S, Lee SY, Barnett G (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197PubMedCrossRefGoogle Scholar
  9. Chenevert TL, Stegman LD, Taylor JM et al (2000) Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 92: 2029–2036PubMedCrossRefGoogle Scholar
  10. Choi SR, Zhuang ZP, Chacko AM et al (2005) SPECT imaging of herpes simplex virus type1 thymidine kinase gene expression by [(123)I]FIAU(1). Acad Radiol 12:798–805PubMedCrossRefGoogle Scholar
  11. Chung JK, Kim K, Kim SK et al (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182PubMedCrossRefGoogle Scholar
  12. Contag PR, Olomu IN, Stevenson DK, Contag CH (1998) Bioluminescent indicators in living mammals. Nat Med 4:245–247PubMedCrossRefGoogle Scholar
  13. Croteau D, Scarpace L, Hearshen D et al (2001) Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery 49:823–829PubMedCrossRefGoogle Scholar
  14. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256:1550–1552PubMedCrossRefGoogle Scholar
  15. de Vries EF, Vaalburg W (2002) Positron emission tomography: measurement of transgene expression. Methods 27:234–241PubMedCrossRefGoogle Scholar
  16. de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ (2004) Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63:535–537PubMedGoogle Scholar
  17. De Witte O, Levivier M, Violon P et al (1996) Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 39:470–476PubMedCrossRefGoogle Scholar
  18. De Witte O, Goldberg I, Wikler D et al (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95:746–750PubMedCrossRefGoogle Scholar
  19. Deng WP, Yang WK, Lai WF et al (2004) Non-invasive in vivo imaging with radiolabelled FIAU for monitoring cancer gene therapy using herpes simplex virus type 1 thymidine kinase and ganciclovir. Eur J Nucl Med Mol Imaging 31:99–109PubMedCrossRefGoogle Scholar
  20. Fulham MJ, Brunetti A, Aloj L, Raman R, Dwyer AJ, Di Chiro G (1995) Decreased cerebral glucose metabolism in patients with brain tumors: an effect of corticosteroids. J Neurosurg 83:657–664PubMedCrossRefGoogle Scholar
  21. Galbraith SM, Maxwell RJ, Lodge MA et al (2003) Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 21:2831–2842PubMedCrossRefGoogle Scholar
  22. Galldiks N, Kracht LW, Burghaus L et al (2006) Use of (11)C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging 33:516–524PubMedCrossRefGoogle Scholar
  23. Gambhir SS, Barrio JR, Wu L et al (1998) Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 39:2003–2011PubMedGoogle Scholar
  24. Gambhir SS, Herschman HR, Cherry SR et al (2000) Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2:118–138PubMedCrossRefGoogle Scholar
  25. Glantz MJ, Hoffman JM, Coleman RE et al (1991) Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Ann Neurol 29:347–355PubMedCrossRefGoogle Scholar
  26. Goldman S, Levivier M, Pirotte B et al (1996) Regional glucose metabolism and histopathology of gliomas. A study based on positron emission tomography-guided stereotactic biopsy. Cancer 78:1098–1106PubMedCrossRefGoogle Scholar
  27. Gossmann A, Helbich TH, Kuriyama N et al (2002) Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging 15:233–240PubMedCrossRefGoogle Scholar
  28. Green LA, Nguyen K, Berenji B et al (2004) A tracer kinetic model for 18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET. J Nucl Med 45:1560–1570PubMedGoogle Scholar
  29. Hackman T, Doubrovin M, Balatoni J et al (2002) Imaging expression of cytosine deaminase-herpes virus thymidine kinase fusion gene (CD/TK) expression with [124I]FIAU and PET. Mol Imaging 1:36–42PubMedCrossRefGoogle Scholar
  30. Hakumaki JM, Poptani H, Sandmair AM, Yla-Herttuala S, Kauppinen RA (1999) 1H MRS detects polyunsaturated fatty acid accumulation during gene therapy of glioma: implications for the in vivo detection of apoptosis. Nat Med 5:1323–1327PubMedCrossRefGoogle Scholar
  31. Harsh GR, Deisboeck TS, Louis DN et al (2000) Thymidine kinase activation of ganciclovir in recurrent malignant gliomas: a gene-marking and neuropathological study. J Neurosurg 92: 804–811PubMedCrossRefGoogle Scholar
  32. Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25:201–209PubMedGoogle Scholar
  33. Heiss WD, Pawlik G, Herholz K, Wagner R, Goldner H, Wienhard K (1984) Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [18F]-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 4:212–223PubMedGoogle Scholar
  34. Heiss WD, Heindel W, Herholz K et al (1990) Positron emission tomography of fluorine-18-deoxyglucose and image-guided phosphorus-31 magnetic resonance spectroscopy in brain tumors. J Nucl Med 31:302–310PubMedGoogle Scholar
  35. Herholz K, Wienhard K, Heiss WD (1990) Validity of PET studies in brain tumors. Cerebrovasc Brain Metab Rev 2:240–265PubMedGoogle Scholar
  36. Herholz K, Heindel W, Luyten PR et al (1992) In vivo imaging of glucose consumption and lactate concentration in human gliomas. Ann Neurol 31:319–327PubMedCrossRefGoogle Scholar
  37. Herholz K, Pietrzyk U, Voges J et al (1993) Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. J Neurosurg 79:853–858PubMedCrossRefGoogle Scholar
  38. Herholz K, Holzer T, Bauer B et al (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322PubMedGoogle Scholar
  39. Herholz K, Kracht LW, Heiss WD (2003) Monitoring the effect of chemotherapy in a mixed glioma by C-11-methionine PET. J Neuroimaging 13:269–271PubMedGoogle Scholar
  40. Herminghaus S, Pilatus U, Moller-Hartmann W et al (2002) Increased choline levels coincide with enhanced proliferative activity of human neuroepithelial brain tumors. NMR Biomed 15: 385–392PubMedCrossRefGoogle Scholar
  41. Hollon T (2000) Researchers and regulators reflect on first gene therapy death. Nat Med 6:6PubMedCrossRefGoogle Scholar
  42. Jacobs AH, Breakefield XO, Fraefel C (1999a) HSV-1-based vectors for gene therapy of neurological diseases and brain tumors: Part I. HSV-1 structure, replication and pathogenesis. Neoplasia 1:387–401PubMedCrossRefGoogle Scholar
  43. Jacobs AH, Breakefield XO, Fraefel C (1999b) HSV-1-based vectors for gene therapy of neurological diseases and brain tumors: Part II. Vector systems and applications. Neoplasia 1:402–416PubMedCrossRefGoogle Scholar
  44. Jacobs AH, Dubrovin M, Hewett J et al (1999c) Functional coexpression of HSV-1 thymidine kinase and green fluorescent protein: implications for noninvasive imaging of transgene expression. Neoplasia 1:154–161PubMedCrossRefGoogle Scholar
  45. Jacobs AH, Voges J, Reszka R et al (2001) Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358:727–729PubMedCrossRefGoogle Scholar
  46. Jacobs AH, Dittmar C, Winkeler A, Garlip G, Heiss WD (2002) Molecular imaging of gliomas. Mol Imaging 1:309–335PubMedCrossRefGoogle Scholar
  47. Jacobs AH, Voges J, Kracht LW et al (2003a) Imaging in gene therapy of patients with glioma. J Neurooncol 65:291–305PubMedCrossRefGoogle Scholar
  48. Jacobs AH, Winkeler A, Hartung M et al (2003b) Improved herpes simplex virus type 1 amplicon vectors for proportional coexpression of positron emission tomography marker and therapeutic genes. Hum Gene Ther 14:277–297PubMedCrossRefGoogle Scholar
  49. Jacobs AH, Kracht LW, Gossmann A et al (2005a) Imaging in neurooncology. NeuroRx 2:333–347PubMedCrossRefGoogle Scholar
  50. Jacobs AH, Thomas A, Kracht LW et al (2005b) 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46:1948–1958PubMedGoogle Scholar
  51. Jacobs AH, Rueger MA, Winkeler A et al (2007) Imaging-guided gene therapy of experimental gliomas. Cancer Res 67:1706–1715PubMedCrossRefGoogle Scholar
  52. Kang KW, Min JJ, Chen X, Gambhir SS (2005) Comparison of [14C]FMAU, [3H]FEAU, [14C]FIAU, and [3H]PCV for monitoring reporter gene expression of wild type and mutant herpes simplex virus type 1 thymidine kinase in cell culture. Mol Imaging Biol 7:296–303PubMedCrossRefGoogle Scholar
  53. Kaschten B, Stevenaert A, Sadzot B et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785PubMedGoogle Scholar
  54. Kim EE, Chung SK, Haynie TP et al (1992) Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics 12:269–279PubMedGoogle Scholar
  55. Kim YJ, Dubey P, Ray P, Gambhir SS, Witte ON (2004) Multimodality imaging of lymphocytic migration using lentiviral-based transduction of a tri-fusion reporter gene. Mol Imaging Biol 6:331–340PubMedCrossRefGoogle Scholar
  56. Klatzmann D, Valery CA, Bensimon G et al (1998) A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for recurrent glioblastoma. Study Group on Gene Therapy for Glioblastoma. Hum Gene Ther 9: 2595–2604PubMedCrossRefGoogle Scholar
  57. Kleihues P, Cavenee W K (2000) Pathology and genetics of tumours of the nervous system (WHO). International Agency for Research on Cancer (IARC Press), LyonGoogle Scholar
  58. Kracht LW, Friese M, Herholz K et al (2003) Methyl-[11C]- l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873PubMedGoogle Scholar
  59. Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384PubMedGoogle Scholar
  60. Langen KJ, Muhlensiepen H, Holschbach M, Hautzel H, Jansen P, Coenen HH (2000) Transport mechanisms of 3–[123I]iodo-alpha-methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl]-L-methionine. J Nucl Med 41:1250–1255PubMedGoogle Scholar
  61. Lehnhardt FG, Bock C, Rohn G, Ernestus RI, Hoehn M (2005) Metabolic differences between primary and recurrent human brain tumors: a 1H NMR spectroscopic investigation. NMR Biomed 18:371–382PubMedCrossRefGoogle Scholar
  62. Lidar Z, Mardor Y, Jonas T et al (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 100:472–479PubMedCrossRefGoogle Scholar
  63. Ludemann L, Hamm B, Zimmer C (2000) Pharmacokinetic analysis of glioma compartments with dynamic Gd-DTPA-enhanced magnetic resonance imaging. Magn Reson Imaging 18: 1201–1214PubMedCrossRefGoogle Scholar
  64. MacLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791PubMedCrossRefGoogle Scholar
  65. Mankoff DA, Dehdashti F, Shields AF (2000) Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia 2:71–88PubMedCrossRefGoogle Scholar
  66. Mardor Y, Roth Y, Lidar Z et al (2001) Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res 61:4971–4973PubMedGoogle Scholar
  67. Mardor Y, Roth Y, Ochershvilli A et al (2004) Pretreatment prediction of brain tumors’ response to radiation therapy using high b-value diffusion-weighted MRI. Neoplasia 6:136–142PubMedCrossRefGoogle Scholar
  68. Mariani L, Siegenthaler P, Guzman R et al (2004) The impact of tumour volume and surgery on the outcome of adults with supratentorial WHO grade II astrocytomas and oligoastrocytomas. Acta Neurochir (Wien) 146:441–448CrossRefGoogle Scholar
  69. Markert JM, Medlock MD, Rabkin SD et al (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7: 867–874PubMedCrossRefGoogle Scholar
  70. Meyerand ME, Pipas JM, Mamourian A, Tosteson TD, Dunn JF (1999) Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy. AJNR Am J Neuroradiol 20: 117–123PubMedGoogle Scholar
  71. Morgan B, Thomas AL, Drevs J et al (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21:3955–3964PubMedCrossRefGoogle Scholar
  72. Nelson SJ (2004) Magnetic resonance spectroscopic imaging. Evaluating responses to therapy for gliomas. IEEE Eng Med Biol Mag 23:30–39PubMedCrossRefGoogle Scholar
  73. Palu G, Cavaggioni A, Calvi P et al (1999) Gene therapy of glioblastoma multiforme via combined expression of suicide and cytokine genes: a pilot study in humans. Gene Ther 6:330–337PubMedCrossRefGoogle Scholar
  74. Papanastassiou V, Rampling R, Fraser M et al (2002) The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther 9:398–406PubMedCrossRefGoogle Scholar
  75. Pauleit D, Floeth F, Tellmann L et al (2004) Comparison of O-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodo-alpha-methyl-L-tyrosine SPECT in brain tumors. J Nucl Med 45:374–381PubMedGoogle Scholar
  76. Phelps ME (2000) PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41:661–681PubMedGoogle Scholar
  77. Pirzkall A, McKnight TR, Graves EE et al (2001) MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol BiolPhys 50:915–928CrossRefGoogle Scholar
  78. Popperl G, Gotz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K (2004) Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31:1464–1470PubMedCrossRefGoogle Scholar
  79. Popperl G, Goldbrunner R, Gildehaus FJ et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 32:1018–1025PubMedCrossRefGoogle Scholar
  80. Preston-Martin S (1999) Epidemiology. In: Berger MS, Wilson CD (eds) The gliomas. Saunders, Philadelphia, pp 2–11Google Scholar
  81. Provenzale JM, McGraw P, Mhatre P, Guo AC, Delong D (2004) Peritumoral brain regions in gliomas and meningiomas: investigation with isotropic diffusion-weighted MR imaging and diffusion-tensor MR imaging. Radiology 232:451–460PubMedCrossRefGoogle Scholar
  82. Rainov NG (2000) A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 11:2389–2401PubMedCrossRefGoogle Scholar
  83. Ram Z, Culver KW, Oshiro EM et al (1997) Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 3:1354–1361PubMedCrossRefGoogle Scholar
  84. Rampling R, Cruickshank G, Papanastassiou V et al (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 7:859–866PubMedCrossRefGoogle Scholar
  85. Ray P, De A, Min JJ, Tsien RY, Gambhir SS (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64:1323–1330PubMedCrossRefGoogle Scholar
  86. Ribom D, Eriksson A, Hartman M et al (2001) Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92:1541–1549PubMedCrossRefGoogle Scholar
  87. Rogulski KR, Wing MS, Paielli DL, Gilbert JD, Kim JH, Freytag SO (2000) Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum.Gene Ther 11:67–76PubMedCrossRefGoogle Scholar
  88. Ross BD, Kim B, Davidson BL (1995) Assessment of ganciclovir toxicity to experimental intracranial gliomas following recombinant adenoviral-mediated transfer of the herpes simplex virus thymidine kinase gene by magnetic resonance imaging and proton magnetic resonance spectroscopy. Clin Cancer Res 1:651–657PubMedGoogle Scholar
  89. Serganova I, Doubrovin M, Vider J et al (2004) Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 64:6101–6108PubMedCrossRefGoogle Scholar
  90. Shand N, Weber F, Mariani L et al (1999) A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum Gene Ther 10: 2325–2335PubMedCrossRefGoogle Scholar
  91. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336PubMedCrossRefGoogle Scholar
  92. Sinha S, Bastin ME, Wardlaw JM, Armitage PA, Whittle IR (2004) Effects of dexamethasone on peritumoural oedematous brain: a DT-MRI study. J Neurol Neurosurg Psychiatry 75: 1632–1635PubMedCrossRefGoogle Scholar
  93. Soghomonyan SA, Doubrovin M, Pike J et al (2005) Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther 12:101–108PubMedCrossRefGoogle Scholar
  94. Sokoloff L, Reivich M, Kennedy C et al (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916PubMedCrossRefGoogle Scholar
  95. Sundaresan G, Paulmurugan R, Berger F et al (2004) MicroPET imaging of Cre-loxP-mediated conditional activation of a herpes simplex virus type 1 thymidine kinase reporter gene. Gene Ther 11:609–618PubMedCrossRefGoogle Scholar
  96. Tang BN, Sadeghi N, Branle F, De Witte O, Wikler D, Goldman S (2005) Semi-quantification of methionine uptake and flair signal for the evaluation of chemotherapy in low-grade oligodendroglioma. J Neurooncol 71:161–168PubMedCrossRefGoogle Scholar
  97. Tjuvajev JG, Stockhammer G, Desai R et al (1995) Imaging the expression of transfected genes in vivo. Cancer Res 55:6126–6132PubMedGoogle Scholar
  98. Tjuvajev JG, Finn R, Watanabe K et al (1996) Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 56:4087–4095PubMedGoogle Scholar
  99. Tjuvajev JG, Avril N, Oku T et al (1998) Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 58:4333–4341PubMedGoogle Scholar
  100. Tjuvajev JG, Joshi A, Callegari J et al (1999) A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia 1:315–320PubMedCrossRefGoogle Scholar
  101. Toda M, Rabkin SD, Martuza RL (1998) Treatment of human breast cancer in a brain metastatic model by G207, a replication-competent multimutated herpes simplex virus 1. Hum Gene Ther 9:2177–2185PubMedCrossRefGoogle Scholar
  102. Todo T, Rabkin SD, Sundaresan P et al (1999) Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther 10:2741–2755PubMedCrossRefGoogle Scholar
  103. Vlassenko AG, Thiessen B, Beattie BJ, Malkin MG, Blasberg RG (2000) Evaluation of early response to SU101 target-based therapy in patients with recurrent supratentorial malignant gliomas using FDG PET and Gd-DTPA MRI. J Neurooncol 46:249–259PubMedCrossRefGoogle Scholar
  104. Voges J, Reszka R, Gossmann A et al(2003) Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol 54:479–487PubMedCrossRefGoogle Scholar
  105. Vos MJ, Uitdehaag BM, Barkhof F et al (2003) Interobserver variability in the radiological assessment of response to chemotherapy in glioma. Neurology 60:826–830PubMedGoogle Scholar
  106. Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355PubMedCrossRefGoogle Scholar
  107. Wen B, Burgman P, Zanzonico P et al (2004) A preclinical model for noninvasive imaging of hypoxia-induced gene expression; comparison with an exogenous marker of tumor hypoxia. Eur J Nucl Med Mol Imaging 31:1530–1538PubMedCrossRefGoogle Scholar
  108. Wiebe LI, Knaus EE (2001) Enzyme-targeted, nucleoside-based radiopharmaceuticals for scintigraphic monitoring of gene transfer and expression. Curr Pharm Des 7:1893–1906PubMedCrossRefGoogle Scholar
  109. Wurker M, Herholz K, Voges J et al (1996) Glucose consumption and methionine uptake in low-grade gliomas after iodine-125 brachytherapy. Eur J Nucl Med 23:583–586PubMedGoogle Scholar
  110. Yaghoubi SS, Barrio JR, Namavari M et al (2005) Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 12:329–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Maria A. Rueger
    • 1
    • 2
    • 3
    • 4
    • 5
  • Alexandra Winkeler
    • 1
    • 2
    • 3
    • 4
    • 5
  • Anne V. Thomas
    • 1
    • 2
    • 3
    • 4
    • 5
  • Lutz W. Kracht
    • 1
    • 2
    • 3
    • 4
    • 5
  • Andreas H. Jacobs
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Laboratory for Gene Therapy and Molecular ImagingMax-Planck Institute for Neurological ResearchGermany
  2. 2.Klaus-Joachim-Zülch-LaboratoriesMax Planck SocietyGermany
  3. 3.Faculty of Medicine of the University of CologneCenter for Molecular Medicine (CMMC)Germany
  4. 4.Departments of NeurologyUniversity of CologneGermany
  5. 5.Klinikum FuldaGermany

Personalised recommendations