Advertisement

Noninvasive Tracer Techniques to Characterize Angiogenesis

  • Roland Haubner
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 185/2)

Abstract

Great efforts are being made to develop antiangiogenesis drugs for treatment of cancer as well as other diseases. Some of the compounds are already in clinical trials. Imaging techniques allowing noninvasive monitoring of corresponding molecular processes can provide helpful information for planning and controlling corresponding therapeutic approaches but will also be of interest for basic science. Current nuclear medicine techniques focus on the development of tracer targeting the vascular endothelial growth factor (VEGF) system, matrix metalloproteinases (MMP), the ED-B domain of a fibronectin isoform, and the integrin αvβ3. In this chapter, the recent tracer developments as well as the preclinical and the clinical evaluations are summarized and the potential of the different approaches to characterize angiogenesis are discussed.

Keywords

Vascular Endothelial Growth Factor MicroPET Imaging Radiolabelled Antibody Fragment Potential Tumor Imaging Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aranapakam V, Davis JM, Grosu GT, Baker J, Ellingboe J, Zask A, Levin JI, Sandanayaka VP, Du M, Skotnicki JS, DiJoseph JF, Sung A, Sharr MA, Killar LM, Walter T, Jin G, Cowling R, Tillett J, Zhao W, McDevitt J, Xu ZB (2003) Synthesis and structure-activity relationship of N-substituted 4-arylsulfonylpiperidine-4-hydroxamic acids as novel, orally active matrix metalloproteinase inhibitors for the treatment of osteoarthritis. J Med Chem 46:2376–2396PubMedCrossRefGoogle Scholar
  2. Assa-Munt N, Jia X, Laakkonen P, Ruoslahti E (2001) Solution structures and integrin binding activities of an RGD peptide with two isomers. Biochemistry 40:2373–2378PubMedCrossRefGoogle Scholar
  3. Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, Weber WA, Schwaiger M (2005) Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-Galacto-RGD in cancer patients. J Nucl Med 46:1333–1341PubMedGoogle Scholar
  4. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O, Niemeyer M, Kessler H, Wester HJ, Weber WA, Schwaiger M (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin Cancer Res 12:3942–3949PubMedCrossRefGoogle Scholar
  5. Berndorff D, Borkowski S, Sieger S, Rother A, Friebe M, Viti F, Hilger CS, Cyr JE, Dinkelborg LM (2005) Radioimmunotherapy of solid tumors by targeting extra domain B fibronectin: identification of the best-suited radioimmunoconjugate. Clin Cancer Res 11:7053s–7063sPubMedCrossRefGoogle Scholar
  6. Bishop GG, McPherson JA, Sanders JM, Hesselbacher SE, Feldman MJ, McNamara CA, Gimple LW, Powers ER, Mousa SA, Sarembock IJ (2001) Selective αvβ3-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit. Circulation 103:1906–1911PubMedGoogle Scholar
  7. Blankenberg FG, Mandl S, Cao YA, O’Connell-Rodwell C, Contag C, Mari C, Gaynutdinov TI, Vanderheyden JL, Backer MV, Backer JM (2004) Tumor imaging using a standardized radiolabeled adapter protein docked to vascular endothelial growth factor. J Nucl Med 45:1373–1380PubMedGoogle Scholar
  8. Blankenberg FG, Backer MV, Levashova Z, Patel V, Backer JM (2006) In vivo tumor angiogenesis imaging with site-specific labeled 99mTc-HYNIC-VEGF. Eur J Nucl Med Mol Imaging 33: 841–848PubMedCrossRefGoogle Scholar
  9. Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A, Leprini A, Sepulveda J, Burrone O, Neri D, Zardi L (2002) Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102: 75–85PubMedCrossRefGoogle Scholar
  10. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164PubMedCrossRefGoogle Scholar
  11. Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA (1995) Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96: 1815–1822PubMedCrossRefGoogle Scholar
  12. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257PubMedCrossRefGoogle Scholar
  13. Castellani P, Dorcaratto A, Pau A, Nicola M, Siri A, Gasparetto B, Zardi L, Viale G (2000) The angiogenesis marker ED-B+ fibronectin isoform in intracranial meningiomas. Acta Neurochir 142:277–282CrossRefGoogle Scholar
  14. Chavakis E, Riecke B, Lin J, Linn T, Bretzel RG, Preissner KT, Brownlee M, Hammes HP (2002) Kinetics of integrin expression in the mouse model of proliferative retinopathy and success of secondary intervention with cyclic RGD peptides. Diabetologia 45:262–267PubMedCrossRefGoogle Scholar
  15. Chen X, Hou Y, Tohme M, Park R, Khankaldyyan V, Gonzales-Gomez I, Bading JR, Laug WE, Conti PS (2004a) Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression. J Nucl Med 45:1776–1783PubMedGoogle Scholar
  16. Chen X, Liu S, Hou Y, Tohme M, Park R, Bading JR, Conti PS (2004b) MicroPET imaging of breast cancer αv-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 6:350–359PubMedCrossRefGoogle Scholar
  17. Chen X, Park R, Hou Y, Khankaldyyan V, Gonzales-Gomez I, Tohme M, Bading JR, Laug WE, Conti PS (2004c) MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur J Nucl Med Mol Imaging 31:1081–1089PubMedCrossRefGoogle Scholar
  18. xChen X, Park R, Shahinian AH, Bading JR, Conti PS (2004d) Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 31:11–19CrossRefGoogle Scholar
  19. Chen X, Park R, Tohme M, Shahinian AH, Bading JR, Conti PS (2004e) MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 15:41–49PubMedCrossRefGoogle Scholar
  20. Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS (2004f) Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 3: 96–104PubMedCrossRefGoogle Scholar
  21. Chen X, Park R, Khankaldyyan V, Gonzales-Gomez I, Tohme M, Moats RA, Bading JR, Laug WE, Conti PS (2005) Longitudinal MicroPET Imaging of Brain Tumor Growth with F-18-labeled RGD peptide. Mol Imaging Biol 29:1–7Google Scholar
  22. Collingridge DR, Carroll VA, Glaser M, Aboagye EO, Osman S, Hutchinson OC, Barthel H, Luthra SK, Brady F, Bicknell R, Price P, Harris AL (2002) The development of [124I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res 62:5912–5919PubMedGoogle Scholar
  23. Cornelissen B, Oltenfreiter R, Kersemans V, Staelens L, Frankenne F, Foidart JM, Slegers G (2005) In vitro and in vivo evaluation of [123I]-VEGF165 as a potential tumor marker. Nucl Med Biol 32:431–436PubMedCrossRefGoogle Scholar
  24. Creamer D, Sullivan D, Bicknell R, Barker J (2002) Angiogenesis in psoriasis. Angiogenesis 5:231–236PubMedCrossRefGoogle Scholar
  25. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22:201–207PubMedCrossRefGoogle Scholar
  26. Curran S, Murray GI (2000) Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer 36:1621–1630PubMedCrossRefGoogle Scholar
  27. Decristoforo C, Faintuch-Linkowski B, Rey A, von Guggenberg E, Rupprich M, Hernandez-Gonzales I, Rodrigo T, Haubner R (2006) [99mTc]HYNIC-RGD for imaging integrin αvβ3 expression. Nucl Med Biol 33:945–952PubMedCrossRefGoogle Scholar
  28. Decristoforo C, Santos I, Pietzsch HJ, Duatti A, Smith CJ, Rey A, Alberto R, von Guggenberg E, Haubner R (2007) Comparision of in vitro and in vivo properties of 99mTc-cRGD peptides labelled using different novel Tc-cores. Q J Nucl Med Mol Imaging 51:33–41PubMedGoogle Scholar
  29. Demartis S, Tarli L, Borsi L, Zardi L, Neri D (2001) Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin. Eur J Nucl Med 28:534–539PubMedCrossRefGoogle Scholar
  30. Eliceiri BP, Cheresh DA (2000) Role of αv integrins during angiogenesis. Cancer J Sci Am 6:S245–S249Google Scholar
  31. Ellis LM, Liu W, Fan F, Jung YD, Reinmuth N, Stoeltzing O, Takeda A, Akagi M, Parikh AA, Ahmad S (2002) Synopsis of angiogenesis inhibitors in oncology. Oncology 16:14–22PubMedGoogle Scholar
  32. Fei X, Zheng QH, Hutchins GD, Liu X, Stone KL, Carlson KA, Mock BH, Winkle WL, Glick-Wilson BE, Miller KD, Fife RS, Sledge GW, Sun HB, Carr RE (2002) Synthesis of MMP inhibitor radiotracers [11C]methyl-CGS 27023A and its analogs, new potential PET breast cancer imaging agents. J Label Compd Radiopharm 45:449–470CrossRefGoogle Scholar
  33. Fei X, Zheng Q-H, Liu X, Wang J-Q, Stone KL, Miller KD, Sledge GW, Hutchins GD (2003a) Synthesis of MMP inhibitor radiotracer [11C]CGS 25966, a new potential PET tumor imaging agent. J Label Compd Radiopharm 46:343–351CrossRefGoogle Scholar
  34. Fei X, Zheng QH, Liu X, Wang JQ, Sun HB, Mock BH, Stone KL, Miller KD, Sledge GW, Hutchins GD (2003b) Synthesis of radiolabeled biphenylsulfonamide matrix metalloproteinase inhibitors as new potential PET cancer imaging agents. Bioorg Med Chem Lett 13:2217–2222PubMedCrossRefGoogle Scholar
  35. Foda HD, Zucker S (2001) Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today 6:478–482PubMedCrossRefGoogle Scholar
  36. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18PubMedGoogle Scholar
  37. Furumoto S, Iwata R, Ido T (2002) Design and synthesis of fluorine-18 labeled matrix metalloproteinase inhibitors for cancer imaging. J Label Compd Radiopharm 45:975–986CrossRefGoogle Scholar
  38. Gasparini G, Longo R, Toi M, Ferrara N (2005) Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol 2:562–577PubMedCrossRefGoogle Scholar
  39. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74:111–122PubMedGoogle Scholar
  40. Hagedorn M, Bikfalvi A (2000) Target molecules for anti-angiogenic therapy: from basic research to clinical trials. Crit Rev Oncol Hematol 34:89–110PubMedCrossRefGoogle Scholar
  41. Hammes HP, Brownlee M, Jonczyk A, Sutter A, Preissner KT (1996) Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nat Med 2:529–533PubMedCrossRefGoogle Scholar
  42. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2: 214–221PubMedCrossRefGoogle Scholar
  43. Harris JM, Martin NE, Modi M (2001) Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 40:539–551PubMedCrossRefGoogle Scholar
  44. Haubner R (2006) αvβ3-integrin imaging: a new approach to characterise angiogenesis? Eur J Nucl Med Mol Imaging 13:54–63CrossRefGoogle Scholar
  45. Haubner R, Wester HJ (2004) Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 10:1439–1455PubMedCrossRefGoogle Scholar
  46. Haubner R, Finsinger D, Kessler H (1997) Stereoisomeric Peptide Libraries and Peptidomimetics for Designing Selective Inhibitors of the αvβ3 Integrin for a New Cancer Therapy. Angew Chem Int Ed Engl 36:1374–1389CrossRefGoogle Scholar
  47. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, Stocklin G, Schwaiger M (1999) Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 40:1061–1071PubMedGoogle Scholar
  48. Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, Kessler H, Schwaiger M (2001a) Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336PubMedGoogle Scholar
  49. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, Senekowitsch-Schmidtke R, Kessler H, Schwaiger M (2001b) Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785PubMedGoogle Scholar
  50. Haubner R, Kuhnast B, Wester HJ, Weber WA, Huber R, Senekowitsch-Schmidtke R, Ziegler SI, Goodman SL, Kessler H, Schwaiger M (2002) [F-18]-RGD-Peptides Conjugated with Hydrophilic Tetrapeptides for the Noninvasive Determination of the αvβ3 Integrin. J Nucl Med 43 (Suppl):89PGoogle Scholar
  51. Haubner R, Bruchertseifer F, Bock M, Kessler H, Schwaiger M, Wester HJ (2004a) Synthesis and biological evaluation of a 99mTc-labelled cyclic RGD peptide for imaging the alphavbeta3 expression. Nuklearmedizin 43:26–32PubMedGoogle Scholar
  52. Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, Schwaiger M (2004b) [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 15:61–69PubMedCrossRefGoogle Scholar
  53. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, Becker KF, Goebel M, Hein R, Wester HJ, Kessler H, Schwaiger M (2005) Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2:29CrossRefGoogle Scholar
  54. Hidalgo M, Eckhardt SG (2001) Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 93:178–93PubMedCrossRefGoogle Scholar
  55. Hynes R (1985) Molecular biology of fibronectin. Annu Rev Cell Biol 1:67–90PubMedCrossRefGoogle Scholar
  56. Hynes RO (2002) A reevaluation of integrins as regulators of angiogenesis. Nat Med 8:918–921PubMedCrossRefGoogle Scholar
  57. Hynes RO, Bader BL, Hodivala-Dilke K (1999) Integrins in vascular development. Braz J Med Biol Res 32:501–510PubMedCrossRefGoogle Scholar
  58. Iwata H, Kobayashi S, Iwase H, Masaoka A, Fujimoto N, Okada Y (1996) Production of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human breast carcinomas. Jpn J Cancer Res 87:602–611PubMedGoogle Scholar
  59. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, Rajopadhye M, Boonstra H, Corstens FH, Boerman OC (2002a) Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151PubMedGoogle Scholar
  60. Janssen MLH, Oyen WJG, Massuger LFAG, Frielink C, Dijkgraaf I, Edwards DS, Rajopadhye WJ, Corstens FHM, Boerman OC (2002b) Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor imaging. Cancer Biother Radiopharm 17:641–646PubMedCrossRefGoogle Scholar
  61. Kiyama R, Tamura Y, Watanabe F, Tsuzuki H, Ohtani M, Yodo M (1999) Homology modeling of gelatinase catalytic domains and docking simulations of novel sulfonamide inhibitors. J Med Chem 42:1723–1738PubMedCrossRefGoogle Scholar
  62. Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkila P, Kantor C, Gahmberg CG, Salo T, Konttinen YT, Sorsa T, Ruoslahti E, Pasqualini R (1999) Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 17:768–774PubMedCrossRefGoogle Scholar
  63. Kuhnast B, Bodenstein C, Wester HJ, Weber WA (2003) Carbon-11 labeling of a N-sulfonylamino acid derivative: a potential tracer for MMP-2 and MMP-9 imaging. J Label Compd Radiopharm 46:1093–1103CrossRefGoogle Scholar
  64. Kuhnast B, Bodenstein C, Haubner R, Wester HJ, Senekowitsch-Schmidtke R, Schwaiger M, Weber WA (2004) Targeting of gelatinase activity with a radiolabeled cyclic HWGF peptide. Nucl Med Biol 31:337–344PubMedCrossRefGoogle Scholar
  65. Kuwano M, Fukushi J, Okamoto M, Nishie A, Goto H, Ishibashi T, Ono M (2001) Angiogenesis factors. Intern Med 40:565–572PubMedCrossRefGoogle Scholar
  66. Levy DE, Lapierre F, Liang W, Ye W, Lange CW, Li X, Grobelny D, Casabonne M, Tyrrell D, Holme K, Nadzan A, Galardy RE (1998) Matrix metalloproteinase inhibitors: a structure-activity study. J Med Chem 41:199–223PubMedCrossRefGoogle Scholar
  67. Li S, Peck-Radosavljevic M, Koller E, Koller F, Kaserer K, Kreil A, Kapiotis S, Hamwi A, Weich HA, Valent P, Angelberger P, Dudczak R, Virgolini I (2001) Characterization of 123I-vascular endothelial growth factor-binding sites expressed on human tumour cells: possible implication for tumour scintigraphy. Int J Cancer 91:789–796PubMedCrossRefGoogle Scholar
  68. Li S, Peck-Radosavljevic M, Kienast O, Preitfellner J, Hamilton G, Kurtaran A, Pirich C, Angelberger P, Dudczak R (2003) Imaging gastrointestinal tumours using vascular endothelial growth factor-165 (VEGF165) receptor scintigraphy. Ann Oncol 14:1274–1277PubMedCrossRefGoogle Scholar
  69. Li S, Peck-Radosavljevic M, Kienast O, Preitfellner J, Havlik E, Schima W, Traub-Weidinger T, Graf S, Beheshti M, Schmid M, Angelberger P, Dudczak R (2004) Iodine-123-vascular endothelial growth factor-165 (123I-VEGF165). Biodistribution, safety and radiation dosimetry in patients with pancreatic carcinoma. Q J Nucl Med Mol Imaging 48:198–206PubMedGoogle Scholar
  70. Matter A (2001) Tumor angiogenesis as a therapeutic target. Drug Discov Today 6:1005–1024PubMedCrossRefGoogle Scholar
  71. Neri D, Carnemolla B, Nissim A, Leprini A, Querze G, Balza E, Pini A, Tarli L, Halin C, Neri P, Zardi L, Winter G (1997) Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 15:1271–1275PubMedCrossRefGoogle Scholar
  72. Neufeld G, Cohen T, Gitay-Goren H, Poltorak Z, Tessler S, Sharon R, Gengrinovitch S, Levi BZ (1996) Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants. Cancer Metastasis Rev 15:153–158PubMedCrossRefGoogle Scholar
  73. Nguyen M, Arkell J, Jackson CJ (2001) Human endothelial gelatinases and angiogenesis. Int J Biochem Cell Biol 33:960–970PubMedCrossRefGoogle Scholar
  74. Oltenfreiter R, Staelens L, Lejeune A, Dumont F, Frankenne F, Foidart JM, Slegers G (2004) New radioiodinated carboxylic and hydroxamic matrix metalloproteinase inhibitor tracers as potential tumor imaging agents. Nucl Med Biol 31:459–468PubMedCrossRefGoogle Scholar
  75. Oltenfreiter R, Staelens L, Hillaert U, Heremans A, Noel A, Frankenne F, Slegers G (2005a) Synthesis, radiosynthesis, in vitro and preliminary in vivo evaluation of biphenyl carboxylic and hydroxamic matrix metalloproteinase (MMP) inhibitors as potential tumor imaging agents. Appl Radiat Isot 62:903–913PubMedCrossRefGoogle Scholar
  76. Oltenfreiter R, Staelens L, Labied S, Kersemans V, Frankenne F, Noel A, Van de Wiele C, Slegers G (2005b) Tryptophane-based biphenylsulfonamide matrix metalloproteinase inhibitors as tumor imaging agents. Cancer Biother Radiopharm 20:639–647PubMedCrossRefGoogle Scholar
  77. Pelmenschikov V, Siegbahn PE (2002) Catalytic mechanism of matrix metalloproteinases: two-layered ONIOM study. Inorg Chem 41:5659–5666PubMedCrossRefGoogle Scholar
  78. Poethko T, Schottelius M, Thumshirn G, Hersel U, Herz M, Henriksen G, Kessler H, Schwaiger M, Wester HJ (2004a) Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. J Nucl Med 45:892–902PubMedGoogle Scholar
  79. Poethko T, Schottelius M, Thumshirn G, Herz M, Haubner R, Henriksen G, Kessler H, Schwaiger M, Wester HJ (2004b) Chemoselective pre-conjugate radiohalogenation of unprotected mono- and multimeric peptides via oxime formation. Radiochimica Acta 92:317–327CrossRefGoogle Scholar
  80. Rosen L (2000) Antiangiogenic strategies and agents in clinical trials. Oncologist 1:20–27CrossRefGoogle Scholar
  81. Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285PubMedCrossRefGoogle Scholar
  82. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497PubMedCrossRefGoogle Scholar
  83. Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, Leprini A, Borsi L, Castellani P, Zardi L, Neri D, Riva P (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9: 571–579PubMedGoogle Scholar
  84. Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA (1999) Decreased angiogenesis and arthritic disease in rabbits treated with an αvβ3 antagonist. J Clin Invest 103:47–54PubMedCrossRefGoogle Scholar
  85. Su ZF, Liu G, Gupta S, Zhu Z, Rusckowski M, Hnatowich DJ (2002) In vitro and in vivo evaluation of a Technetium-99m-labeled cyclic RGD peptide as a specific marker of αvβ3 integrin for tumor imaging. Bioconjug Chem 13:561–570PubMedCrossRefGoogle Scholar
  86. Su ZF, He J, Rusckowski M, Hnatowich DJ (2003) In vitro cell studies of technetium-99m labeled RGD-HYNIC peptide, a comparison of tricine and EDDA as co-ligands. Nucl Med Biol 30:141–149PubMedCrossRefGoogle Scholar
  87. Tarli L, Balza E, Viti F, Borsi L, Castellani P, Berndorff D, Dinkelborg L, Neri D, Zardi L (1999) A high-affinity human antibody that targets tumoral blood vessels. Blood 94:192–198PubMedGoogle Scholar
  88. Thumshirn G, Hersel U, Goodman SL, Kessler H (2003) Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry 9:2717–2725PubMedCrossRefGoogle Scholar
  89. Tijink BM, Neri D, Leemans CR, Budde M, Dinkelborg LM, Stigter-van Walsum M, Zardi L, van Dongen GA (2006) Radioimmunotherapy of head and neck cancer xenografts using 131I-labeled antibody L19-SIP for selective targeting of tumor vasculature. J Nucl Med 47: 1127–1135PubMedGoogle Scholar
  90. van Hagen PM, Breeman WA, Bernard HF, Schaar M, Mooij CM, Srinivasan A, Schmidt MA, Krenning EP, de Jong M (2000) Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. Int J Cancer 90:186–198PubMedCrossRefGoogle Scholar
  91. Vihinen P, Kahari VM (2002) Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 99:157–166PubMedCrossRefGoogle Scholar
  92. Wang W, McMurray JS, Wu Q, Campbell ML, Li C (2005) Convenient solid-phase synthesis of diethylenetriaminepenta-acetic acid (DTPA)- conjugated cyclic RGD peptide analogues. Cancer Biother Radiopharm 20:547–556PubMedCrossRefGoogle Scholar
  93. Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, Gambhir SS, Chen X (2005) microPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718PubMedGoogle Scholar
  94. Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, Chen X (2006) Quantitative PET Imaging of Tumor Integrin αvβ3 Expression with 18F-FRGD2. J Nucl Med 47:113–121PubMedGoogle Scholar
  95. Zheng QH, Fei X, Liu X, Wang JQ, Bin Sun H, Mock BH, Lee Stone K, Martinez TD, Miller KD, Sledge GW, Hutchins GD (2002) Synthesis and preliminary biological evaluation of MMP inhibitor radiotracers [11C]methyl-halo-CGS 27023A analogs, new potential PET breast cancer imaging agents. Nucl Med Biol 29:761–770PubMedCrossRefGoogle Scholar
  96. Zheng QH, Fei X, DeGrado TR, Wang JQ, Lee Stone K, Martinez TD, Gay DJ, Baity WL, Mock BH, Glick-Wilson BE, Sullivan ML, Miller KD, Sledge GW, Hutchins GD (2003) Synthesis, biodistribution and micro-PET imaging of a potential cancer biomarker carbon-11 labeled MMP inhibitor (2R)-2-[[4-(6-fluorohex-1-ynyl)phenyl]sulfonylamino]-3-methylbutyric acid [(11)C]methyl ester. Nucl Med Biol 30:753–760PubMedCrossRefGoogle Scholar
  97. Zheng QH, Fei X, Liu X, Wang JQ, Stone KL, Martinez TD, Gay DJ, Baity WL, Miller KD, Sledge GW, Hutchins GD (2004) Comparative studies of potential cancer biomarkers carbon-11 labeled MMP inhibitors (S)-2-(4-[11C]methoxybiphenyl-4-sulfonylamino)-3-methylbutyric acid and N-hydroxy-(R)-2-[[(4-[11C]methoxyphenyl)sulfonyl]benzylamino]-3-methylbut anamide. Nucl Med Biol 31:77–85PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roland Haubner
    • 1
  1. 1.Universitätsklinik für NuklearmedizinMedizinische Universität InnsbruckInnsbruckAustria

Personalised recommendations