Translational Imaging: Imaging of Apoptosis

  • H. William StraussEmail author
  • Francis Blankenberg
  • Jean-Luc Vanderheyden
  • Jonathan Tait
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 185/2)


Since its original description in 1972, apoptosis or programmed cell death has been recognized as the major pathway by which the body precisely regulates the number and type of its cells as part of normal embryogenesis, development, and homeostasis. Later it was found that apoptosis was also involved in the pathogenesis of a number of human diseases, cell immunity, and the action of cytotoxotic drugs and radiation therapy in cancer treatment. As such, the imaging of apoptosis with noninvasive techniques such as with radiotracers, including annexin V and lipid proton magnetic resonance spectroscopy, may have a wide range of clinical utility in both the diagnosis and monitoring therapy of a wide range of human disorders. In this chapter we review the basic biochemical and morphologic features of apoptosis and the methods developed thus far to image this complex process in humans.


Annexin Versus Magic Angle Spin Annexin Versus Binding Calcium Binding Site Translational Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adebodun F, Chung J, Montez B, Oldfield E, Shan X (1992) Spectroscopic studies of lipids and biological membranes: carbon-13 and proton magic-angle sample-spinning nuclear magnetic resonance study of glycolipid-water systems.Biochemistry 31:4502–4509PubMedCrossRefGoogle Scholar
  2. Bazzi MD, Nelsestuen GL (1991) Highly sequential binding of protein kinase C and related proteins to membranes. Biochemistry. 30:7970–7977PubMedCrossRefGoogle Scholar
  3. Belhocine T, Steinmetz N, Hustinx R, Bartsch P, Jerusalem G, Seidel L, Rigo P, Green A (2002) Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8:2766–2774PubMedGoogle Scholar
  4. Belhocine T, Steinmetz N, Li C, Green A, Blankenberg FG (2004) The imaging of apoptosis with the radiolabeled annexin V: optimal timing for clinical feasibility. Technol Cancer Res Treat 3:23–32PubMedGoogle Scholar
  5. Blankenberg FG (2003) Molecular imaging: The latest generation of contrast agents and tissue characterization techniques. J Cell Biochem 90:443–453PubMedCrossRefGoogle Scholar
  6. Blankenberg FG, Storrs RW, Naumovski L, Goralski T, Spielman D (1996) Detection of apoptotic cell death by proton nuclear magnetic resonance spectroscopy. Blood 87:1951–1956PubMedGoogle Scholar
  7. Blankenberg FG, Katsikis PD, Storrs RW, Beaulieu C, Spielman D, Chen JY, Naumovski L, Tait JF (1997) Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy. Blood 89:3778–3786PubMedGoogle Scholar
  8. Blankenberg FG, Katsikis PD, Tait JF et al (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 95: 6349–6354PubMedCrossRefGoogle Scholar
  9. Blankenberg FG, Kalinyak J, Liu L, Koike M, Cheng D, Goris ML, Green A, Vanderheyden JL, Tong DC, Yenari MA (2006) 99mTc-HYNIC-annexin V SPECT imaging of acute stroke and its response to neuroprotective therapy with anti-Fas ligand antibodyGoogle Scholar
  10. Eur J Nucl Med Mol Imaging 33:566–574Google Scholar
  11. Boersma HH, Liem IH, Kemerink GJ, Thimister PW, Hofstra L, Stolk LM, van Heerde WL, Pakbiers MT, Janssen D, Beysens AJ, Reutelingsperger CP, Heidendal GA (2003) Comparison between human pharmacokinetics and imaging properties of two conjugation methods for 99mTc-annexin A5. Br J Radiol 76:553–560PubMedCrossRefGoogle Scholar
  12. Boersma HH, Stolk LM, Kenis H et al (2004) The ApoCorrect assay: a novel, rapid method to determine the biological functionality of radiolabeled and fluorescent Annexin A5. Anal Biochem 327:126–134PubMedCrossRefGoogle Scholar
  13. Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, Heidendal GA, Reutelingsperger CP (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050PubMedGoogle Scholar
  14. Bose S, Tuunainen I, Parry M, Medina OP, Mancini G, Kinnunena PKJ (2004) Binding of cationic liposomes to apoptotic cells. Anal Biochem 331:385–394PubMedCrossRefGoogle Scholar
  15. Bullok K, Piwnica-Worms D (2005) Synthesis and characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis. J Med Chem 48:5404–5407PubMedCrossRefGoogle Scholar
  16. Cauchon N, Langlois R, Rousseau JA, Tessier G, Cadorette J, Lecomte R, Hunting DJ, Pavan RA, Zeisler SK, van Lier JE (2007) PET imaging of apoptosis with 64Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging 34:247–258PubMedCrossRefGoogle Scholar
  17. Charles-Edwards EM, deSouza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 6:135–143PubMedCrossRefGoogle Scholar
  18. Cheng LL, Chang IW, Louis DN, Gonzalez RG (1998) Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens. Cancer Res 58:1825–1832PubMedGoogle Scholar
  19. D’Arceuil H, Rhine W, de Crespigny A, Yenari M, Tait JF, Strauss WH, Engelhorn T, Kastrup A, Moseley M, Blankenberg FG (2000) 99mTc annexin V imaging of neonatal hypoxic brain injury. Stroke 31:2692–2700PubMedGoogle Scholar
  20. Dekker B, Keen H, Shaw D et al (2005) Functional comparison of annexin V analogues labeled indirectly and directly with iodine-124. Nucl Med Biol 32:403–413PubMedCrossRefGoogle Scholar
  21. Deng J, Miller FH, Rhee TK, Sato KT, Mulcahy MF, Kulik LM, Salem R, Omary RA, Larson AC (2006) Diffusion-weighted MR imaging for determination of hepatocellular carcinoma response to ttrium-90 radioembolization. J Vasc Interv Radiol 17:1195–200PubMedCrossRefGoogle Scholar
  22. Emoto K, Kobayashi T, Yamaji A, Aizawa H, Yahara I, Inoue K, Umeda M (1996) Redistribution of phosphatidylethanolamine at the cleavage furrow of dividing cells during cytokinesis. Proc Natl Acad Sci U S A 93:12867–12872PubMedCrossRefGoogle Scholar
  23. Engelmann J, Henke J, Willker W, Kutscher B, Nossner G, Engel J, Leibfritz D (1996) Early stage monitoring of miltefosine induced apoptosis in KB cells by multinuclear NMR spectroscopy. Anticancer Res 16(3B):1429–1439PubMedGoogle Scholar
  24. Flotats A, Carrio I (2003) Non-invasive in vivo imaging of myocardial apoptosis and necrosis. Eur J Nucl Med Mol Imaging 30:615–630PubMedGoogle Scholar
  25. Furukawa Y, Bangham CRM, Taylor GP, Weber JN, Osame M (2000) Frequent reversible membrane damage in peripheral blood B cells in human T cell lymphotrophic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Clin Exp Immunol 120: 307–316PubMedCrossRefGoogle Scholar
  26. Geske FJ, Lieberman R, Strange R, Gerschenson LE (2001) Early stages of p53-induced apoptosis are reversible. Cell Death Differ 8:182–191PubMedCrossRefGoogle Scholar
  27. Gottlieb RA (2005) Apoptosis. In: Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Kaushansky K, Prcha JT (eds) Williams Hematology, Part III: Molecular and cellular hematology, 7th edn. McGraw-Hill, pp 125–130Google Scholar
  28. Grierson JR, Yagle KJ, Eary JF, Tait JF, Gibson DF, Lewellen B, Link JM, Krohn KA (2004) Production of [F-18]fluoroannexin for imaging apoptosis with PET. Bioconjug Chem 15: 373–379PubMedCrossRefGoogle Scholar
  29. Haas RL, de Jong D, Valdes Olmos RA, Hoefnagel CA, van den Heuvel I, Zerp SF, Bartelink H, Verheij M (2004) In vivo imaging of radiation-induced apoptosis in follicular lymphoma patients. Int J Radiat Oncol Biol Phys 59:782–787PubMedGoogle Scholar
  30. Haberkom U, Kinscherf R, Krammer PH, Mier W, Eisenhut M (2001) Investigation of a potential scintigraphic marker of apoptosis: radioiodinated Z-Val-Ala-DL-Asp(O-methyl)-fluoromethyl ketone. Nucl Med Biol 28:793–798CrossRefGoogle Scholar
  31. Hakumaki JM, Poptani H, Puumalainen AM, Loimas S, Paljarvi LA, Yla-Herttuala S, Kauppinen RA (1998) Quantitative 1H nuclear magnetic resonance diffusion spectroscopy of BT4C rat glioma during thymidine kinase-mediated gene therapy in vivo: identification of apoptotic response. Cancer Res 58:3791–3799PubMedGoogle Scholar
  32. Hammill AK, Uhr JW, Scheuermann RH (1999) Annexin V staining due to loss of membrane asymmetry can be reversible and precede commitment to apoptotic death. Exp Cell Res 251: 16–21PubMedCrossRefGoogle Scholar
  33. Hanshaw RG, Smith BD (2005) New reagents for phosphatidylserine recognition and detection of apoptosis. BioorgMed Chem 13:5035–5042CrossRefGoogle Scholar
  34. Jin M, Smith C, Hsieh HY, Gibson DF, Tait JF (2004) Essential role of B-helix calcium binding sites in annexin V-membrane binding. J Biol Chem 279:40351–40357PubMedCrossRefGoogle Scholar
  35. Kartachova M, Haas RL, Olmos RA, Hoebers FJ, van Zandwijk N, Verheij M (2004) In vivo imaging of apoptosis by 99mTc-annexin V scintigraphy: visual analysis in relation to treatment response. Radiother Oncol 72:333–339PubMedCrossRefGoogle Scholar
  36. Kemerink GJ, Liu X, Kieffer D, Ceyssens S, Mortelmans L, Verbruggen AM, Steinmetz ND, Vanderheyden J-L, Green A, Verbeke K (2003) Safety, biodistribution, and dosimetry of 99mTc- HYNIC-annexin V, a novel human recombinant annexin V for human application. J Nucl Med 44:947–952PubMedGoogle Scholar
  37. Kenis H, van Genderen H, Bennaghmouch A, Rinia HA, Frederik P, Narula J, Hofstra L, Reutelingsperger CP (2004) Cell surface-expressed phosphatidylserine and annexin A5 open a novel portal of cell entry. J Biol Chem 279:52623–52629PubMedCrossRefGoogle Scholar
  38. Kerr JF (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182:471–474PubMedCrossRefGoogle Scholar
  39. Kerr JFR, Searle JA (1972) A suggested explanation for the paradoxically slow growth of basal cell carcinomas that contain numerous mitotic figures. J Pathology 107:41–44CrossRefGoogle Scholar
  40. Kerr JF, Wylie AH, Currie AR (1972) Apoptosis: the basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit J of Cancer 26:239–257Google Scholar
  41. Kiestelaer BLJH, Reutelingsperger CPM, Heidendal GAK, Daemen MJAP, Mess WH, Hofstra L (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. New Engl J Med 350:1472–1473Google Scholar
  42. Lahorte CM, van de Wiele C, Bacher K, van den Bossche B, Thierens H, van Belle S, Slegers G, Dierckx RA (2003) Biodistribution and dosimetry study of 123I-rh-annexin V in mice and humans. Nucl Med Commun 24:871–880PubMedCrossRefGoogle Scholar
  43. Lampl Y, Lorberboym M, Blankenberg FG, Sadeh M, Gilad R (2006) Annexin V SPECT imaging of phosphatidylserine expression in patients with dementia. Neurology 66:1253–1254PubMedCrossRefGoogle Scholar
  44. Laumonier C, Segers J, Laurent S, Michel A, Coppee F, Belayew A, Elst LV, Muller RN (2006) A New Peptidic Vector for Molecular Imaging of Apoptosis, Identified by Phage Display Technology. J Biomol Screen 11:537–545PubMedCrossRefGoogle Scholar
  45. Lejeune M, Ferster A, Cantinieaux B, Sariban E (1998) Prolonged but reversible neutrophil dyfunctions differentially sensitive to granulocyte colony-stimulating factor in children with acute lymphoblastic leukemia. Br J Haematol 102:1284–1291PubMedCrossRefGoogle Scholar
  46. Lidar Z, Mardor Y, Jonas T, Pfeffer R, Faibel M, Nass D, Hadani M, Ram Z (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 100:472–479PubMedCrossRefGoogle Scholar
  47. Lin SH, Vincent A, Shaw T, Maynard KI, Maiese K (2000) Prevention of nitric oxide-induced neuronal injury through the modulation of independent pathways of programmed cell death. J Cereb Blood Flow Metab 20:1380–1391PubMedCrossRefGoogle Scholar
  48. Lorberboym M, Blankenberg FG, Sadeh M, Lampl Y (2006) In vivo imaging of apoptosis in patients with acute stroke: correlation with blood-brain barrier permeability. Brain Res 1103: 13–19PubMedCrossRefGoogle Scholar
  49. Luo Q-Y, Zhang Z-Y, Wang F, Lu H-K, Guo Y-Z, Zhu R-S (2005) Preparation, in vitro and in vivo evaluation of 99mTc-Annexin B1: A novel radioligand for apoptosis imaging. Biochemical and Biophysical Research Communications 335:1102–1106PubMedCrossRefGoogle Scholar
  50. Lyng H, Sitter B, Bathen TF, Jensen LR, Sundfør K, Kristensen GB, Gribbestad IS (2007) Metabolic mapping by use of high-resolution magic angle spinning 1H MR spectroscopy predicts apoptosis in cervical carcinomas. BMC Cancer 7:11PubMedCrossRefGoogle Scholar
  51. Mahon MM, Williams AD, Soutter WP, Cox IJ, McIndoe GA, Coutts GA, Dina R, deSouza NM (2004) 1H magnetic resonance spectroscopy of invasive cervical cancer: an in vivo study with ex vivo corroboration. NMR Biomed 17:1–9PubMedCrossRefGoogle Scholar
  52. Maiese K, Vincent AM (2000) Membrane asymmetry and DNA degradation: functionally distinct determinants of neuronal programmed cell death. J Neurosci Res 59:568–580PubMedCrossRefGoogle Scholar
  53. Martin S, Pombo I, Poncet P, David B, Arock M, Blank U (2000) Immunologic stimulation of mast cells leads to the reversible exposure of phosphatidylserine in the absence of apoptosis. Int Arch Allergy Immunol 123(3):249–258PubMedCrossRefGoogle Scholar
  54. Moka D, Vorreuther R, Schicha H, Spraul M, Humpfer E, Lipinski M, Foxall PJ, Nicholson JK, Lindon JC (1998) Biochemical classification of kidney carcinoma biopsy samples using magic-angle-spinning 1H nuclear magnetic resonance spectroscopy. J Pharm Biomed Anal 17: 125–132PubMedCrossRefGoogle Scholar
  55. Mukherjee A, Kothari K, Toth G, Szemenyei E, Sarma HD, Kornyei J, Venkatesh M (2006) 99mTc-labeled annexin V fragments: a potential SPECT radiopharmaceutical for imaging cell death.Nucl Med Biol 33(5):635–643PubMedCrossRefGoogle Scholar
  56. Murakami Y, Takamatsu H, Taki J, Tatsumi M, Noda A, Ichise R, Tait JF, Nishimura S (2004) 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imaging 31:469–474PubMedCrossRefGoogle Scholar
  57. Narula J, Strauss HW (2003) Invited commentary: P.S. I love you: implications of phosphatidyl serine (PS) reversal in acute ischemic syndromes. J Nucl Med 44:397–399PubMedGoogle Scholar
  58. Narula J, Acio ER, Narula N, Samuels LE, Fyfe B, Wood D, Fitzpatrick JM, Raghunath PN, Tomaszewski JE, Kelly C, Steinmetz N, Green A, Tait JF, Leppo J, Blankenberg FG, Jain D, Strauss HW (2001) Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 7:1347–1352PubMedCrossRefGoogle Scholar
  59. O’Rourke MGE, Ellem KAO (2000) John Kerr and apoptosis. Med J Australia 173:616–617PubMedGoogle Scholar
  60. Quinti L, Weissleder R, Tung C-H (2006) A fluorescent nanosensor for apoptotic cells. Nano Lett 6:488–490PubMedCrossRefGoogle Scholar
  61. Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140PubMedGoogle Scholar
  62. Riksen NP, Oyen WJ, Ramakers BP, Van den Broek PH, Engbersen R, Boerman OC, Smits P, Rongen GA (2005) Oral therapy with dipyridamole limits ischemia-reperfusion injury in humans. Clin Pharmacol Ther 78:52–59PubMedCrossRefGoogle Scholar
  63. Riksen NP, Zhou Z, Oyen WJ, Jaspers R, Ramakers BP, Brouwer RM, Boerman OC, Steinmetz N, Smits P, Rongen GA (2006) Caffeine prevents protection in two human models of ischemic preconditioning. J Am Coll Cardiol 48:700–707PubMedCrossRefGoogle Scholar
  64. Rongen GA, Oyen WJ, Ramakers BP, Riksen NP, Boerman OC, Steinmetz N, Smits P (2005) Annexin A5 scintigraphy of forearm as a novel in vivo model of skeletal muscle preconditioning in humans. Circulation 111:173–178PubMedCrossRefGoogle Scholar
  65. Rottey S, Slegers G, Van Belle S, Goethals I, Van de Wiele C (2006) Sequential 99mTc-hydrazinonicotinamide-annexin V imaging for predicting response to chemotherapy. J Nucl Med 47:1813–1818PubMedGoogle Scholar
  66. Schellenberger EA, Weissleder R, Josephson L (2004a) Optimal modification of annexin V with fluorescent dyes. Chembiochem 5:271–274PubMedCrossRefGoogle Scholar
  67. Schellenberger EA, Sosnovik D, Weissleder R, Josephson L (2004b) Magneto/optical annexin V, a multimodal protein. Bioconjug Chem 15:1062–1067PubMedCrossRefGoogle Scholar
  68. Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T, Dai G, Reynolds F, Grazette L, Rosenzweig A, Weissleder R, Josephson L (2005) magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 54: 718–724PubMedCrossRefGoogle Scholar
  69. Stratton JR, Dewhurst TA, Kasina S, Reno JM, Cerqueira MD, Baskin DG, Tait JF (1995) Selective uptake of radiolabeled annexin V on acute porcine left atrial thrombi. Circulation 92: 3113–3121PubMedGoogle Scholar
  70. Strauss HW, Narula J, Blankenberg FG (2000) Radioimaging to identify myocardial cell death and probably injury. Lancet 356:180–181PubMedCrossRefGoogle Scholar
  71. Tait JF, Cerqueira MD, Dewhurst TA, Fujikawa K, Ritchie JL, Stratton JR (1994) Evaluation of annexin V as a platelet-directed thrombus targeting agent. Thromb Res 75:491–501PubMedCrossRefGoogle Scholar
  72. Tait JF, Brown DS, Gibson DF, Blankenberg FG, Strauss HW (2000) Development and characterization of annexin V mutants with endogenous chelation sites for (99m)Tc. Bioconjug Chem 11:918–925PubMedCrossRefGoogle Scholar
  73. Tait JF, Gibson DF, Smith C (2004) Measurement of the affinity and cooperativity of annexin V-membrane binding under conditions of low membrane occupancy. Anal Biochem 329: 112–119PubMedCrossRefGoogle Scholar
  74. Tait JF, Smith C, Blankenberg FG (2005) Structural requirements for in vivo detection of cell death with 99mTc-annexin V. J Nucl Med 46:807–815PubMedGoogle Scholar
  75. Taki J, Higuchi T, Kawashima A, Tait JF, Kinuya S, Muramori A, Matsunari I, Nakajima K, Tonami N, Strauss HW (2004) Detection of cardiomyocyte death in a rat model of ischemia and reperfusion using 99mTc-labeled annexin V. J Nucl Med 45:1536–1541PubMedGoogle Scholar
  76. Thimister PW, Hofstra L, Liem IH, Boersma HH, Kemerink G, Reutelingsperger CP, Heidendal GA (2003) In vivo detection of cell death in the area at risk in acute myocardial infarction. J Nucl Med 44:391–396PubMedGoogle Scholar
  77. Valonen PK, Lehtimaki KK, Vaisanen TH, Kettunen MI, Grohn OH, Yla-Herttuala S, Kauppinen RA (2004) Water diffusion in a rat glioma during ganciclovir-thymidine kinase gene therapy-induced programmed cell death in vivo: correlation with cell density. J Magn Reson Imaging 19:389–396PubMedCrossRefGoogle Scholar
  78. van de Wiele C, Lahorte C, Vermeersch H, Loose D, Mervillie K, Steinmetz ND, Vanderheyden JL, Cuvelier CA, Slegers G, Dierck RA (2003) Quantitative tumor apoptosis imaging using technetium-99m-HYNIC annexin V single photon emission computed tomography. J Clin Oncol 21:3483–3487PubMedCrossRefGoogle Scholar
  79. van Tilborg GAF, Mulder WJM, Chin PTK, Storm G, Reutelingsperger CP, Nicolay K, Strijkers GJ (2006) Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells. Bioconjugate Chem 17:865–868CrossRefGoogle Scholar
  80. Vermeersch H, Ham H, Rottey S, Lahorte C, Corsetti F, Dierckx R, Steinmetz N, Van de Wiele C (2004) Intraobserver, interobserver, and day-to-day reproducibility of quantitative 99mTc-HYNIC annexin-V imaging in head and neck carcinoma. Cancer Biother Radiopharm 19: 205–210PubMedCrossRefGoogle Scholar
  81. Vriens PW, Blankenberg FG, Stoot JH, Ohtsuki K, Berry GJ, Tait JF, Strauss HW, Robbins RC (1998) The use of technetium Tc 99m annexin V for in vivo imaging of apoptosis during cardiac allograft rejection. J Thorac Cardiovasc Surg 116:844–853PubMedCrossRefGoogle Scholar
  82. Wu XX, Arslan AA, Wein R, Reutlingsperger CP, Lockwood CJ, Kuczynski E, Rand JH (2006) Analysis of circulating Annexin A5 parameters during pregnancy: absence of differences between women with recurrent spontaneous pregnancy losses and controls. Am J Obstet Gyn 195:971–978CrossRefGoogle Scholar
  83. Wylie AH, Kerr JFR, Curry JR (1973) Cell death in the normal neonatal rat adrenal cortex. J Path 111:255–261CrossRefGoogle Scholar
  84. Yang MY, Chuang H, Chen RF, Yang KD (2002) Reversible phosphatidylserine expression on blood granulocytes related to membrane perturbation but not DNA strand breaks. J Leukoc Biol 71:231–237PubMedGoogle Scholar
  85. Yang SK, Attipoe S, Klausner AP, Tian R, Pan D, Rich TA, Turner TT, Steers WD, Lysiak JJ (2006) In vivo detection of apoptotic cells in the testis using fluorescence labeled annexin V in a mouse model of testicular torsion. J Urol 176:830–835PubMedCrossRefGoogle Scholar
  86. Zhao M, Zhu X, Ji S, Zhou J, Ozker KS, Fang W, Molthen RC, Hellman RS (2006) 99mTc-Labeled C2A Domain of synaptotagmin I as a target-specific molecular probe for noninvasive imaging of acute myocardial infarction. J Nucl Med 47:1367–1374PubMedGoogle Scholar
  87. Zhou D, Chu W, Rothfuss J, Zeng C, Xu J, Jones L, Welch MJ, Mach RH (2006) Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg Med Chem Lett 16:5041–5046.PubMedCrossRefGoogle Scholar
  88. Zijlstra S, Gunawan J, Burchert W (2003) Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl Radiat Isot 58:201–207PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • H. William Strauss
    • 1
    Email author
  • Francis Blankenberg
    • 2
  • Jean-Luc Vanderheyden
    • 3
  • Jonathan Tait
    • 4
  1. 1.Memorial Sloan Kettering HospitalNew York
  2. 2.Lucile Salter Packard Children’s HospitalStanfordUSA
  3. 3.Technology and Medical OfficeGE HealthcareWaukeshaUSA
  4. 4.Laboratory MedicineUniversity of Washington Medical CenterSeattleUSA

Personalised recommendations