Magnetic Resonance of Mouse Models of Cardiac Disease

  • Karl-Heinz HillerEmail author
  • Christiane Waller
  • Axel Haase
  • Peter M. Jakob
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 185/2)


In recent years magnetic resonance imaging (MRI) has become the noninvasive standard for the quantitative evaluation of cardiac function, masses, and infarct size. Wall motion analysis is used to display myocardial dysfunction and microcirculatory deficits can be displayed by perfusion imaging and quantification of the myocardial regional blood volume. Magnetic resonance spectroscopy (MRS) also provides quantitative information on cardiac energetics and, in combination with MRI, insights into cardiac structure and function. The use of both techniques permits complementary data collection within the same experimental setup.

Nevertheless, it should be mentioned that MR does not directly visualize genes or gene product expression but morphological or bioenergetical outcomes of gene expression instead.

In conclusion, cardiac MR is a valuable tool applicable to mouse phenotyping and, also, can be applied to assess the effects of therapeutic agents. Thus, MR of mouse models of cardiac disease has great potential to substantially contribute to the understanding of the underlying pathomechanisms and can help to evaluate new therapy options.


Myocardial Perfusion Right Ventricular Magn Reson Image Physiol Heart Circ Cine Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axel L, Dougherty L (1989) Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology 172:349–350PubMedGoogle Scholar
  2. Bashir A, Bao J, Simons M, Post M, Burstein D (2000) MR imaging of perfusion defects in mice. Proc Intl Soc Magn Reson Med 8:726Google Scholar
  3. Brau AC, Wheeler CT, Hedlund LW, Johnson GA (2002) Fiber-optic stethoscope: a cardiac monitoring and gating system for magnetic resonance microscopy. Magn Reson Med 47:314–321PubMedCrossRefGoogle Scholar
  4. Cassidy PJ, Schneider JE, Grieve SM, Lygate C, Neubauer S, Clarke K (2004) Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields. J Magn Reson Imaging 19:229–237PubMedCrossRefGoogle Scholar
  5. Chacko VP, Aresta F, Chacko SM, Weiss RG (2000) MRI/MRS assessment of in vivo murine cardiac metabolism, morphology, and function at physiological heart rates. Am J Physiol Heart Circ Physiol 279:H2218–H2224PubMedGoogle Scholar
  6. Choudhury RP, Aguinaldo JG, Rong JX, Kulak JL, Kulak AR, Reis ED, Fallon JT, Fuster V, Fisher EA, Fayad ZA (2002) Atherosclerotic lesions in genetically modified mice quantified in vivo by non-invasive high-resolution magnetic resonance microscopy. Atherosclerosis 162:315–321PubMedCrossRefGoogle Scholar
  7. Detre J, Leigh JS, Williams DS, Koretsky AP. Perfusion Imaging (1992) Magn Reson Med 23: 37–45PubMedCrossRefGoogle Scholar
  8. Engelhardt S, Hein L, Wiesmann F, Lohse MJ (1999) Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A 96:7059–7064PubMedCrossRefGoogle Scholar
  9. Fayad ZA, Fallon JT, Shinnar M, Whrli S, Dansky HM, Poon M, Badimon JJ, Charlton SA, Fisher EA, Breslow JL, Fuster V (1998) Noninvasive in vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation 98: 1541–1547PubMedGoogle Scholar
  10. Fishbein KW, McConville P, Spencer RG (2001) The lever-coil: a simple, inexpensive sensor for respiratory and cardiac motion in MRI experiments. Magn Reson Imaging 19:881–889PubMedCrossRefGoogle Scholar
  11. Franco F, Dubois SK, Peshock RM, Shohet RV (1998) Megnetic resonance imaging accurately estimates LV mass in a transgenic mouse model of cardiac hypertrophy. Am J Physiol 274: H679–H683PubMedGoogle Scholar
  12. Franco F, Thomas GD, GiroirB, Bryant D, Bullock MC, Chwialkowski MC, Victor RG, Peshock RM (1999) Magnetic resonance imaging and invasive evaluation of development of heart failure in transgenic mice with myocardial expression of tumor necrosis factor-α. Circulation 99: 448–454PubMedGoogle Scholar
  13. Haase A, Frahm J, Matthaei M, Hänicke W, Merboldt KD (1986) FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson 67:258–266Google Scholar
  14. Hennig J, Nauerth A, Friedburg H, Ratzel D (1984) New rapid imaging procedure for nuclear spin tomography. Radiologe 24:579–580PubMedGoogle Scholar
  15. Henson RE, Song SK, Pastorek JS, Lorenz CH (2000) Left ventricular torsion is equal in mice and humans. Am J Physiol 278:H1117–H1123Google Scholar
  16. Jerosch-Herold M, Wilke N (1998) Magnetic resonance qunatification of the myocardial perfusion reserve with a fermi function model for constrained deconvolution. Med Phys 25:73–84PubMedCrossRefGoogle Scholar
  17. Kahler E, Waller C, Rommel E, Belle V, Hiller KH, Voll S, Bauer WR, Haase A (1999) Perfusion-corrected mapping of cardiac regional blood volume in rats in vivo. Magn Reson Med 42: 500–506PubMedCrossRefGoogle Scholar
  18. Kubota T, McTierman CF, Frye CS, Slawson SE, Lemster HB, Koretsky AP, Demetris AJ, Feldman AM (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81:627–635PubMedGoogle Scholar
  19. Lemieux SK, Glover GH (1996) An infrared device for monitoring the respiration of small rodents during magnetic resonance imaging. J Magn Reson Imaging 6:561–564PubMedCrossRefGoogle Scholar
  20. Maestri R, Milia AF, Salis MB, Graiani G, Lagrasta C, Monica M, Corradi D, Emanueli C, Madeddu P (2003) Cardiac hypertrophy and microvascular deficit in kinin B2 receptor knockout mice. Hypertension 41:1151–1155PubMedCrossRefGoogle Scholar
  21. Manning WJ, Wei JY, Fossel ET, Burstein D (1990) Measurement of left ventricular mass in rats using electrocardiogram-gated magnetic resonance imaging. Am J Physiol 258:H1181–H1186PubMedGoogle Scholar
  22. McKibben CK, Reo NV (1992) A piezoelectric respiratory monitor for in vivo NMR. Magn Reson Med 27:338–342PubMedCrossRefGoogle Scholar
  23. Merx MW, Flogel U, Stumpe T, Godecke A, Decking UK, Schrader J (2001) Myoglobin facilitates oxygen diffusion. FASEB J 15:1077–1079PubMedGoogle Scholar
  24. Minard KR, Wind RA, Phelps RL (1998) A compact respiratory-triggering device for routine microimaging of laboratory mice. J Magn Reson Imaging 8:1343–1348PubMedCrossRefGoogle Scholar
  25. Nahrendorf M, Hu K, Fraccarollo D, Hiller KH, Haase A, Bauer WR, Ertl G (2003) Time course of right ventricular remodeling in rats with experimental myocardial infarction. Am J Physiol Heart Circ Physiol 284:H241–H248PubMedGoogle Scholar
  26. Nahrendorf M, Hiller KH, Hu K, Ertl G, Haase A, Bauer WR (2003) Cardiac magnetic resonance imaging in small animal models of human heart failure. Med Image Anal 7:369–375PubMedCrossRefGoogle Scholar
  27. Nahrendorf M, Streif JUG, Hiller KH, Hu K, Nordbeck P, Ritter O, Sosnovik D, Bauer L, Neubauer S, Jakob PM, Ertl G, Spindler M, Bauer WR (2006) Multimodal functional cardiac MRI in creatine kinase-deficient mice reveals subtile abnormalities in myocardial perfusion and mechanics. Am J Physiol Heart Circ Physiol 290:H2516–H2521PubMedCrossRefGoogle Scholar
  28. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14: 133–140PubMedGoogle Scholar
  29. Oppelt A, Graumann R, Barfuss H, Fischer H, Hartl W, Schajor W (1986) FISP – a new fast MRI sequence. Electromedica 54:15–18Google Scholar
  30. Rommel E, Kuhstrebe J, Wiesmann F, Szimtenings M, Streif J, Haase A (2000) A double trigger unit for ECG and breath triggered mouse heart imaging. MAGMA 11:250Google Scholar
  31. Rudin M, Pedersen B, Umemura K, Zierhut W (1991) Determination of rat heart morphology and function in vivo in two models of cardiac hypertrophy by means of magnetic resonance imaging. Basic Res Cardiol 86:165–174PubMedCrossRefGoogle Scholar
  32. Ruff J, Wiesmann F, Hiller KH, Neubauer S, Rommel E, Haase A (1998) Influence of isoflurane anesthesia on contractility of mouse heart in vivo. An NMR imaging study. MAGMA 6:169Google Scholar
  33. Ruff J, Wiesmann F, Hiller KH, Voll S, von Kienlin M, Bauer WR, Rommel E, Neubauer S, Haase A (1998) Magnetic resonance microimaging for noninvasive quantification of myocardial function and mass in the mouse. Magn Reson Med 40:43–48PubMedCrossRefGoogle Scholar
  34. Saupe KW, Spindler M, Hopkins JC, Shen W, Ingwall JS (2000) Kinetic, thermodynamic, and developmental consequences of deleting creatine kinase isoenzymes from the heart. Reaction kinetics of the creatine kinase isoenzymes in the intact heart. J Biol Chem 275:19742–19746PubMedCrossRefGoogle Scholar
  35. Schwarzbauer C, Morissey S, Haase A (1996) Quantitative magnetic resonance imaging of perfusion using magnetic labeling of water protons within the detection slice. Magn Reson Med 35: 540-546PubMedGoogle Scholar
  36. Seo HS, Lombardi DM, Polinsky P, Powell-Braxton L, Bunting S, Schwartz SM, Rosenfeld ME (1997) Peripheral vascular stenosis in apolipoprotein E-deficient mice. Potential roles of lipid deposition, medial atrophy, and adventitial inflammation. Arterioscler Thromb Vasc Biol 17:3593–601PubMedGoogle Scholar
  37. Shapiro EP, Rogers WJ, Beyar, R, Soulen RL, Zerhouni EA, Lima JA, Weiss JL (1989) Determination of left ventricular mass by magnetic resonance imaging in hearts deformed by acute infarction. Circulation 79:706–711PubMedGoogle Scholar
  38. Siri FM, Jelicks LA, Leinwand LA, Gardin JM (1997) Gated magnetic resonance imaging of normal and hypertrophied murine hearts. Am J Physiol 272:H2394–H2402PubMedGoogle Scholar
  39. Slawson SE, Roman BB, Williams DS, Koretsky AP (1998) Cardiac MRI of the normal and hypertrophied mouse heart. Magn Reson Med 39:980–987PubMedCrossRefGoogle Scholar
  40. Streif JUG, Herold V, Szimtenings M, Lanz TE, Nahrendorf M, Wiesmann F, Bauer WR, Rommel E, Haase A (2003) In vivo time-resolved quantitative motion mapping of the murine myocardium with phase contrast MRI. Magn Reson Med 49:315–321PubMedCrossRefGoogle Scholar
  41. Streif JUG, Nahrendorf M, Hiller KH, Waller C, Wiesmann F, Rommel E, Haase A, Bauer WR (2005) In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magn Res Med 53:584–592CrossRefGoogle Scholar
  42. Waller C, Kahler E, Hiller KH, Hu K, Nahrendorf M, Voll S, Haase A, Ertl G, Bauer WR (2000) Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology 215:189–197PubMedGoogle Scholar
  43. Waller C, Hiller KH, Kahler E, Hu K, Nahrendorf M, Voll S, Haase A, Ertl G, Bauer WR (2001) Serial magnetic resonance imaging of microvascular remodeling in the infarcted rat heart. Circulation 103:1564–1569PubMedGoogle Scholar
  44. Wang Y, Rossman PJ, Grimm RC, Riederer SJ, Ehmann RL (1996). Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology 198:55–60PubMedGoogle Scholar
  45. Weiss RG, Chatham JC, Georgakopolous D, Charron MJ, Walliman T, Kay L, Walzel B, Wang Y, Kass DA, Gerstenblith G, Chacko VP (2002) An increase in the myocardial PCr/ATP ratio in GLUT4 null mice. FASEB J 15:1077–1079Google Scholar
  46. Wiesmann F, Ruff J, Hiller KH, Rommel E, Haase A, Neubauer S (2000) Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenil, and adult mice. Am J Physiol Heart Circ Physiol 278:H652–H657PubMedGoogle Scholar
  47. Wiesmann F, Ruff J, Dienesch C, Laupold A, Illinger R, Frydrychowicz A, Hiller KH, Rommel E, Haase A, Neubauer S (2001) Dobutamine stress magnetic resonance microimaging in mice: acute changes of cardiac geometry and function in normal and failing murine hearts. Circ Res 88:563–569PubMedGoogle Scholar
  48. Wiesmann F, Frydrychowicz A, Rautenberg J, Illinger R, Rommel E, Haase A, Neubauer S (2002) Analysis of right ventricular function in healthy mice and a murine model of heart failure by in vivo MRI. Am J Physiol Heart Circ Physiol 283:H1065–H1071PubMedGoogle Scholar
  49. Wiesmann F, Szimtenings M, Frydrychowicz A, Illinger R, Hunecke A, RommelE, Neubauer S, Haase A (2003) High-resolution MRI with cardiac and respiratory gating allows for accurate in vivo atherosclerotic plaque visualization in the murine aortic arch. Magn Reson Med 50:69–74PubMedCrossRefGoogle Scholar
  50. Wilke N, Simm C, Zhang J, Ellermann J, Ya X, Merkle H, Path G, Ludemann H, Bache R, Urgurbil K (1993) Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Res Med 29:485–497CrossRefGoogle Scholar
  51. Wood ML, Henkelman RM (1986) The magnetic field dependence of the breathing artifact. Magn Reson Imaging 4:387–392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Karl-Heinz Hiller
    • 1
    Email author
  • Christiane Waller
    • 2
  • Axel Haase
    • 1
    • 3
  • Peter M. Jakob
    • 1
    • 3
  1. 1.Physikalisches InstitutUniversität WürzburgWürzburgGermany
  2. 2.Medizinische Klinik und Poliklinik I/HerzkreislaufzentrumWürzburgGermany
  3. 3.MRB Research Center of Magnetic Resonance BavariaWürzburgGermany

Personalised recommendations