Skip to main content

Classification and Survival Analysis Using Multi-objective Evolutionary Algorithms

  • Chapter
Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases

Part of the book series: Studies in Computational Intelligence ((SCI,volume 98))

  • 645 Accesses

Model extraction from data has at least three objectives. It aims to produce accurate, comprehensible and interesting models. Hence, multi-objective evolutionary algorithms are a natural choice to tackle this problem. They are capable of optimizing several incommensurable objectives in as single run without making any assumptions about the importance of each objective. This chapter proposes several multi-objective evolutionary algorithms to tackle three different model extraction tasks. The first approach performs supervised classification whilst overcoming some of the shortcomings of existing approaches. The second and third approach tackle two survival analysis problems. All approaches are evaluated on artificial, benchmark and real-world medical data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freitas A A, Rozenberg G (2002) Data mining and knowledge discovery with evolutionary algorithms. Springer Verlag, Berlin, Heidelberg, New York

    MATH  Google Scholar 

  2. Sobin L H, Wittekind C (2002) Classification of malignant tumours. Wiley-Liss

    Google Scholar 

  3. Russell S J, Norvig P (1994) Artificial intelligence: A modern approach. Prentice Hall

    Google Scholar 

  4. Holland J H (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor

    Google Scholar 

  5. Michie D, Spiegelhalter D J, Taylor C C (1994) Machine learning, neural and statistical classification. Ellis Horwood

    Google Scholar 

  6. Krause P, Clark D (1993) Representing uncertain knowledge: An artificial intelligence approach. Kluwer Academic Publishers

    Google Scholar 

  7. Michalewicz Z, Fogel D B (2005) How to solve it: modern heuristics. 2nd Edition, Springer, Berlin

    Google Scholar 

  8. Gordon A D (1981) Classification. Chapman and Hall

    Google Scholar 

  9. Bishop C M (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  10. Kleinbaum D G (1996) Survival analysis: A self-learning text. Springer

    Google Scholar 

  11. Afifi A, Clark V A, May S (2003) Computer-aided multivariate analysis. Chapman and Hall

    Google Scholar 

  12. Kalbfleisch J D, Prentice R L (1980) The statistical analysis of failure time data. Wiley

    Google Scholar 

  13. Evans M, Hastings N, Peacock B (1993) Statistical distributions. John Wiley and Sons

    Google Scholar 

  14. Lawless J F (2002) Statistical models and methods for lifetime data. Wiley, New York

    Google Scholar 

  15. Damato B E (2000) Ocular tumours : diagnosis and treatment. Butterworth Heinemann

    Google Scholar 

  16. Klir G J, Clair U S, Yuan B (1997) Fuzzy set theory: foundations and applications. Prentice Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  17. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley Chichester

    Google Scholar 

  18. Quinlan J R (1994) C4.5 : programs for machine learning. Morgan Kaufmann

    Google Scholar 

  19. Duda R O, Hart P E, Stork H G (2000) Pattern classification. Wiley-Interscience, New York

    Google Scholar 

  20. Silverman B W (1999) Density estimation for statistics and data analysis. Chapman and Hall

    Google Scholar 

  21. Fayyad U M, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. Advances in Knowledge Discovery and Data Mining, AAAI Press/The MIT Press 1–36

    Google Scholar 

  22. Setzkorn C, Taktak A F, Damato B (2006) Evolving oblique decision trees for survival analysis. Poster Proceedings of the 6th Industrial Conference on Data Mining, Springer 144–158

    Google Scholar 

  23. Freitas A A (2000) Evolutionary algorithms. Handbook of Data Mining and Knowledge Discovery

    Google Scholar 

  24. Provost F, Fawcett T, Kohavi R (1998) The case against accuracy estimation for comparing induction algorithms. Proc. 15th International Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA 445–453

    Google Scholar 

  25. Fonseca C M, Fleming P J (1995) Multiobjective genetic algorithms made easy: selection, sharing, and mating restriction. Proceedings of the First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, Sheffield, UK 42–52

    Google Scholar 

  26. Holland J H, Reitman J S (2002) Cognitive systems based on adaptive algorithms. In: D. A. Waterman and F. Hayes-Roth (eds) Pattern Directed Inference Systems, Academic Press 313–329

    Google Scholar 

  27. Holland J H (1986) Escaping brittleness: The possibility of general-purpose learning algorithms applied to rule-based systems. In: R. S. Michalski and J. G. Carbonell and T. M. Mitchell (eds) Machine Learning: An Artificial Intelligence Approach, Volume II, Morgan Kaufmann 593–623

    Google Scholar 

  28. Fawcett T (2001) Using rule sets to maximize ROC performance. Proceedings of the IEEE International Conference on Data Mining, IEEE Computer Society 131–138

    Google Scholar 

  29. Spears W M (1995) Adapting crossover in evolutionary algorithms. In: J. R. McDonnell and R. G. Reynolds and D. B. Fogel (eds) Proc. of the Fourth Annual Conference on Evolutionary Programming, MIT Press, Cambridge, MA 367–384

    Google Scholar 

  30. Laumanns M, Thiele L, Zitzler E, Deb K (2002) Archiving with guaranteed convergence and diversity in multi-objective optimization. In: Langdon W B, Cantú-Paz E, Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L Potter M A, Schultz A C, Miller J F, Burke E, Jonoska N (eds) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, Morgan Kaufmann Publishers, San Francisco, CA 94104, USA 439–447

    Google Scholar 

  31. Setzkorn C, Paton R C (2004) JavaSpaces-an affordable technology for the simple implementation of reusable parallel evolutionary algorithms. In: López J A, Benfenati E, Dubitzky W (eds) Knowledge Exploration in Life Science Informatics - KELSI 2004 (LNAI 3303), Springer-Verlag, New York 151–161

    Google Scholar 

  32. Laumanns M, Zitzler E, Thiele L (2000) A unified model for multi-objective evolutionary algorithms with elitism. Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000). IEEE Press, Piscataway, New Jersey 46–53

    Chapter  Google Scholar 

  33. Hoffmann F, Pfister G (1995) A new learning method for the design of hierarchical fuzzy controllers using messy genetic algorithms. Proceedings of the Sixth International Fuzzy Systems Association World Congress (IFSA’95). Sao Paulo, Brazil 249–252

    Google Scholar 

  34. Clearwater S, Provost F (1990) RL4: A tool for knowledge-based induction. Proceedings of the Second International IEEE Conference on Tools for Artificial Intelligence 24–30

    Google Scholar 

  35. Duch W, Jankowski N, Grabczewski K, Adamczak R (2000) Optimization and interpretation of rule-based classifiers. Intelligent Information Systems, Advances in Soft Computing 1–14

    Google Scholar 

  36. Nürnberger A, Klose A, Kruse R (2000) Analyzing borders between partially contradicting fuzzy classification rules. Proceedings of 19th International Conference of the North American Fuzzy Information Processing Society (NAFIPS 2000) 59–63

    Google Scholar 

  37. Cramer N L (1985) A representation for the adaptive generation of simple sequential programs. Proceedings of the International Conference on Genetic Algorithms and Their Applications 183–187

    Google Scholar 

  38. Koza J R (1998) Genetic programming. In: Williams James G, Kent A (eds) Encyclopedia of Computer Science and Technology, Marcel-Dekker 29–43

    Google Scholar 

  39. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength pareto evolutionary algorithm. EUROGEN 2001 - Evolutionary Methods for Design, Optimisation and Control with Applications to Industrial Problems 19–26

    Google Scholar 

  40. Burges C J C (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2):121–167

    Article  Google Scholar 

  41. Provost F J, Aronis J M (1996) Scaling up inductive learning with massive parallelism. Machine Learning 23(1):33–46

    Google Scholar 

  42. Dhar V, Chou D, Provost F J (2000) Discovering interesting patterns for investment decision making with GLOWER - A genetic learner overlaid with entropy reduction. Data Mining and Knowledge Discovery 4(4):251–280

    Article  MATH  Google Scholar 

  43. Eiben A E, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans. on Evolutionary Computation 3(2):124–141

    Article  Google Scholar 

  44. Grohman W M, Dhawan A P (2001) Fuzzy convex set-based pattern classification for analysis of mammographic microcalcifications. Pattern Recognition 34:1469–1482

    Article  MATH  Google Scholar 

  45. Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from medical data. Artificial Intelligence in Medicine 16:149–169

    Article  Google Scholar 

  46. Russo M (1997) FuGeNeSys - a fuzzy genetic neural system for fuzzy modeling. IEEE Transactions On Fuzzy Systems 6(3):373–388

    Article  Google Scholar 

  47. Jain A, Duin P, Mao J (2000) Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37

    Article  Google Scholar 

  48. Damato B E (2005) Current management of uveal melanoma. European Journal of Cancer Supplements 3(3):433–435

    Article  Google Scholar 

  49. Singer J D, Willett J B (1993) It’s about time: Using discrete-time survival analysis to study duration and the timing of events. Journal of Educational Statistics 18(2):155–195

    Article  Google Scholar 

  50. Setzkorn C, Taktak A F, Damato B (2006) On the use of multi-objective evolutionary algorithms for survival analysis. BioSystems (in press).

    Google Scholar 

  51. Freireich E J et al.(1963) The Effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia. Blood 21:699–716

    Google Scholar 

  52. Setzkorn C, Paton R C (2005) On the use of multi-objective evolutionary algorithms for the induction of fuzzy classification rule systems. BioSystems 81(2):101–112

    Article  Google Scholar 

  53. Eleuteri A, Tagliaferri R, Milano L, De Placido S, De Laurentiis M (2003) A novel neural network-based survival analysis model. Neural Networks 16(5–6):855–864

    Article  Google Scholar 

  54. Hand D J, Till R J (2001) A simple generalization of the area under the ROC curve for multiple class classification problems. Machine Learning 45:171–186

    Article  MATH  Google Scholar 

  55. Hanley J, McNeil B J (1982) The meaning and use of the area under a receiver operating characteristic ROC curve. Radiology 143:29–36

    Google Scholar 

  56. Bradley A (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7):1145–1159

    Article  Google Scholar 

  57. Cordón O, del Jesus M J, Herrera F, Lozano M (1999) A proposal on reasoning methods in fuzzy rule-based classification systems. International Journal of Approximate Reasoning 20:21–45

    Google Scholar 

  58. Steimann F (1997) Fuzzy set theory in medicine. Artificial Intelligence in Medicine 11(1):1–7

    Article  Google Scholar 

  59. Zadeh L A (1965) Fuzzy sets. Information and Control 8(3): 338–353

    Article  MATH  MathSciNet  Google Scholar 

  60. Biganzoli E, Boracchi P, Mariani L, Marubini E (1998) Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Statistics in Medicine 17(10):1169–1186

    Article  Google Scholar 

  61. Clark T G, Bradburn M J, Love S B, Altman D G (2003) Survival analysis part IV: Further concepts and methods in survival analysis. British Journal of Cancer 89:781–786

    Article  Google Scholar 

  62. De Jong K A (1975) An analysis of the behaviour of a class of genetic adaptive systems. PhD thesis, University of Michigan

    Google Scholar 

  63. Setzkorn C (2005) On the use of multi-objective evolutionary algorithms for classification rule induction. PhD Thesis, University of Liverpool, Department of Computer Science Liverpool, United Kingdom

    Google Scholar 

  64. Smith S F (1980) A learning system based on genetic algorithm. PhD Thesis, University of Pittburgh

    Google Scholar 

  65. Setzkorn C, Paton R C (2003) MERBIS - A multi-objective evolutionary rule base induction system. ULCS-03-016, University of Liverpool

    Google Scholar 

  66. Sebag M, Azé J, Lucas N (2004) ROC-based evolutionary learning: application to medical data mining. Artificial Evolution, 384–396

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Setzkorn, C. (2008). Classification and Survival Analysis Using Multi-objective Evolutionary Algorithms. In: Ghosh, A., Dehuri, S., Ghosh, S. (eds) Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases. Studies in Computational Intelligence, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77467-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77467-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77466-2

  • Online ISBN: 978-3-540-77467-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics