Skip to main content

A Survey of Artificial Neural Network-Based Modeling in Agroecology

  • Chapter
Soft Computing Applications in Industry

Introduction

Agroecological systems are difficult to model because of their high complexity and their nonlinear dynamic behavior. The evolution of such systems depends on a large number of ill-defined processes that vary in time, and whose relationships are often highly non-linear and very often unknown. According to Schultz et al. (2000), there are two major problems when dealing with modeling agroecological processes. On the one hand, there is an absence of equipment able to capture information in an accurate way, and on the other hand there is a lack of knowledge about such systems. Researchers are thus required to build-up models in rich and poor-data situations, by integrating different sources of data, even if this data is noisy, incomplete, and imprecise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkenhead, M.J., et al.: Weed and crop discrimination using image analysis and artificial intelligence methods. Computers and Electronics in Agriculture 39, 15–171 (2003)

    Article  Google Scholar 

  • Arca, B., Benincasa, F., Vincenzi, M.: Evaluation of neural network techniques for estimating evapotranspira. In: Engineering Application of Neural Networks Conference, Cagliari, pp. 62–69 (2001)

    Google Scholar 

  • Arellano, O.: An Improved Methodology for Land-Cover Classification Using Artificial Neural Networks and a Decision Tree Classifier. Ph.D. thesis, University of Cincinnati (2004)

    Google Scholar 

  • Barreto, M., Pérez-Uribe, A.: Improving the correlation hunting in a large quantity of SOM component planes. In: de Sá, J.M., et al. (eds.) ICANN 2007. LNCS, vol. 4668, Springer, Heidelberg (2007)

    Google Scholar 

  • Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  • Boaventura, J.: Greenhouse Climate Models: An Overview. In: EFITA 2003, Debrecen, Hungary (2003)

    Google Scholar 

  • Bocco, M., Ovando, G., Sayago, S.: Development and evaluation of neural network models to estimate daily solar radiation at Córdoba, Argentina. Pesquisa Agropecuária Brasileira 41, 179–184 (2006)

    Article  Google Scholar 

  • Boishebert, d., Giraudel, J.L., Montury, M.: Characterization of strawberry varieties by SPME–GC–MS and Kohonen self-organizing map. Chemometrics and Intelligent Laboratory Systems 80, 13–23 (2006)

    Article  Google Scholar 

  • Broner, I., Comstock, C.R.: Combining expert systems and neural networks for learning site-specific conditions. Computers and Electronics in Agriculture 19, 37–53 (1997)

    Article  Google Scholar 

  • Burks, T.F., et al.: Evaluation of Neural-network Classifiers for Weed Species Discrimination. Biosystems Eng. 91, 293–304 (2005)

    Article  Google Scholar 

  • Chon, T.S., et al.: Patternizing communities by using an artificial neural network. Ecological Modelling 90, 69–78 (1996)

    Article  Google Scholar 

  • Chung, L.H., Hsieh, J.H., Chang, T.S.: Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network. Atmospheric Research 81, 124–139 (2006)

    Article  Google Scholar 

  • Deadman, P., Gimblett, H.R.: An Application of Neural Net Based Techniques and GIS for Vegetation Management and Restoration. AI Applications (1997)

    Google Scholar 

  • Diamantopoulou, M.J.: Artificial neural networks as an alternative tool in pine bark volume estimation. Computers and Electronics in Agriculture 48, 235–244 (2005)

    Article  Google Scholar 

  • Dimopoulos, I., et al.: Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city. Ecological Modelling 120, 157–165 (1999)

    Article  Google Scholar 

  • Drummond, S.T., Sudduth, K.A., Joshi, A.: Predictive Ability Of Neural Networks For Site-Specific Yield Estimation. The Second International Geospatial Information in Agriculture and Forestry, Lake Buena Vista, Florida (2000)

    Google Scholar 

  • Foody, G.M.: Applications of the self-organising feature map neural network in community data analysis. Ecological Modelling 97–107 (1999)

    Google Scholar 

  • Foody, G.M., Cutler, M.E.J.: Mapping the species richness and composition of tropical forests from remotely sensed data with neural networks. Ecological Modelling 195, 37–42 (2006)

    Article  Google Scholar 

  • Francl, L.J.: Squeezing the turnip with artificial neural nets. Phytopathology 94, 1007–1012 (2004)

    Article  Google Scholar 

  • Giraudel, J.L., Lek, S.: A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecological Modelling 146, 329–339 (2001)

    Article  Google Scholar 

  • Granitto, P.M., et al.: Automatic Identification Of Weed Seeds By Color Image Processing. VI Argentine Congress on Computer Science Ushuaia, Argentina (2000)

    Google Scholar 

  • Green, T.R., et al.: Relating crop yield to topographic attributes using Spatial Analysis Neural Networks and regression. Geoderma (Article in press) (2007)

    Google Scholar 

  • Gupta, R., et al. (eds.): Understanding Helicoverpa armigera Pest Population Dynamics related to Chickpea Crop Using Neural Networks Third International Conference on Data Mining, Florida, USA. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  • Guyer, D.E., Yang, X.: Use of genetic artificial neural networks and spectral imaging for defect detection on cherries. Computers and Electronics in Agriculture 29, 179–194 (2000)

    Article  Google Scholar 

  • Hashimoto, Y.: Special issue:Applications of artificial neural networks and genetic algorithms to agricultural systems. Computers and Electronics in Agriculture 18, 71–72 (1997)

    Article  Google Scholar 

  • Hilbert, D.W., Ostendorf, B.: The utility of artificial neural networks for modelling the distribution of vegetation in past, present and future climates. Ecological Modelling 146, 311–327 (2001)

    Article  Google Scholar 

  • Himberg, J.: Enhancing the SOM-based Data Visualization by Linking Different Data Projections. In: Proceedings of 1st International Symposium IDEAL 1998, Intelligent Data Engineering and Learning–Perspectives on Financial Engineering and Data Mining, pp. 427–434 (1998)

    Google Scholar 

  • Hoogenboom, G., Georgiev, G., Gresham, D.: Development of weather based products for agricultural and environmental applications. In: Preprints of the 24th Conf. On Agricultural and Forest Meteorology, pp. 66–67. American Meteorological Society, Boston, Mass (2000)

    Google Scholar 

  • Huang, K.-Y.: Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Computers and Electronics in Agriculture 57, 3–11 (2007)

    Article  Google Scholar 

  • Jain, A.: Predicting Air Temperature For Frost Warning Using Artificial Neural Networks. Msc thesis. The University of Georgia (2003)

    Google Scholar 

  • Jiménez, D.R., Satizabal, H.F., Pérez-Uribe, A.: Modelling Sugar Cane Yield Using Artificial Neural Networks The 6th European Conference on Ecological Modelling, Trieste, Italy, November 27-30 (to appear, 2007)

    Google Scholar 

  • Kaul, M., Hill, R.L., Walthall, C.: Artificial neural networks for corn and soybean yield prediction. Agricultural Systems 85, 1–18 (2005)

    Article  Google Scholar 

  • Kavdır, I.: Discrimination of sunflower, weed and soil by artificial neural networks. Computers and Electronics in Agriculture 44, 153–160 (2004)

    Article  Google Scholar 

  • Kehagias, A., et al.: Predictive Modular Neural Networks Methods for Prediction of Sugar Beet Crop Yield. In: IFAC Conference on Control Applications and Ergonomics in Agriculture, Athens, Greece (1998)

    Google Scholar 

  • Koekkoek, E.J.W., Booltink, H.: Neural network models to predict soil water retention. European Journal of Soil Science 50, 489–495 (1999)

    Article  Google Scholar 

  • Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  • Kondo, N., et al.: Machine vision based quality evaluation of Iyokan orange fruit using neural networks. Computers and Electronics in Agriculture 29, 135–147 (2000)

    Article  Google Scholar 

  • Levine, E.R., Kimes, D.S., Sigillito, V.G.: Classifying soil structure using neural networks. Ecological Modelling 92, 101–108 (1996)

    Article  Google Scholar 

  • Li.: Spatial Interpolation Of Weather Variables Using Artificial Neural Networks. Msc thesis, University of Georgia, Athens (2002)

    Google Scholar 

  • Liu, Y., Weisberg, H., He, R.: Sea surface temperature patterns on the West Florida Shelf using Growing Hierarchical Self-Organizing Maps. Journal of Atmospheric and Oceanic Technology 23, 325–338 (2006)

    Article  Google Scholar 

  • Miao, Y., Mulla, D.J., Robert, P.C.: Identifying important factors influencing corn yield and grain quality variability using artificial neural networks. Precision Agriculture 7, 117–135 (2006)

    Article  Google Scholar 

  • Morimoto, T., Hashimoto, Y.: AI approaches to identification and control of total plant production systems. Control Engineering Practice 8, 555–567 (2000)

    Article  Google Scholar 

  • Moshou, D., et al.: Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real-Time Imaging 11, 75–83 (2005)

    Article  Google Scholar 

  • Moshou, D., et al.: Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Computers and Electronics in Agriculture 44, 173–188 (2004)

    Article  Google Scholar 

  • Moshou, D., Ramon, H., Baerdemaeker, d.: A Weed Species Spectral Detector Based on Neural Networks. Precision Agriculture 3, 209–223 (2002)

    Article  Google Scholar 

  • Moshou, D., et al.: A neural network–based plant classifier. Computers and Electronics in Agriculture 31, 5–16 (2001)

    Article  Google Scholar 

  • Murase, H.: Special issue:artificial intelligence in agriculture. Computers and Electronics in Agriculture 29, 1–2 (2000)

    Article  Google Scholar 

  • Nakano, K.: Application of neural networks to the color grading of apples. Computers and Electronics in Agriculture 18, 105–116 (1997)

    Article  Google Scholar 

  • Noble, P.A., Tribou, E.H.: Neuroet: An easy-to-use artificial neural network for ecological and biological modeling. Ecological Modelling 203, 87–98 (2007)

    Article  Google Scholar 

  • Oide, M., Ninomiya, S.: Discrimination of soybean leaflet shape by neural networks with image input. Computers and Electronics in Agriculture 29, 59–72 (2000)

    Article  Google Scholar 

  • Park, S.J., Hwang, C.S., Vlek, P.L.G.: Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agricultural Systems 85, 59–81 (2005)

    Article  Google Scholar 

  • Paruelo, J.M., Tomasel, F.: Prediction of functional characteristics of ecosystems: a comparison of artificial neural networks and regression models. Ecological Modelling 98, 173–186 (1997)

    Article  Google Scholar 

  • Pasgianos, G.D., et al.: A nonlinear feedback technique for greenhouse environmental control. Computers and Electronics in Agriculture 40, 153–177 (2003)

    Article  Google Scholar 

  • Paul, P.A., Munkvold, G.P.: Regression and Artificial Neural Network Modeling for the Prediction of Gray Leaf Spot of Maize. Phytopathology 95, 388–396 (2005)

    Article  Google Scholar 

  • Philip, N.S., Joseph, K.B.: A neural network tool for analyzing trends in rainfall. Computers & Geosciences 29, 215–223 (2003)

    Article  Google Scholar 

  • Raju, K.S., Kumar, D.N., Ducksteinc, L.: Artificial neural networks and multicriterion analysis for sustainable irrigation planning. Computers & Operations Research 33, 1138–1153 (2006)

    Article  MATH  Google Scholar 

  • Satizábal, H.F., Jiménez, D.R., Pérez-Uribe, A.: Consequences of Data Uncertainty and Data Precision in Artificial Neural Network Sugar Cane Yield Prediction. In: Sandoval, F., et al. (eds.) IWANN 2007. LNCS, vol. 4507, Springer, Heidelberg (2007)

    Google Scholar 

  • Satizábal, H.F., Pérez-Uribe, A.: Relevance Metrics to Reduce Input Dimensions. ICANN 2007 International Conference on Artificial Neural Networks, Porto, Portugal, September 9 – 13 (to appear, 2007)

    Google Scholar 

  • Samad, T., Harp, S.A.: Self-organization with partial data. Network: Computation in Neural Systems 3, 205–212 (1992)

    Article  Google Scholar 

  • Schultz, A., Wieland, R.: The use of neural networks in agroecological modelling. Computers and Electronics in Agriculture 18, 73–90 (1997)

    Article  Google Scholar 

  • Schultz, A., Wieland, R., Lutze, G.: Neural networks in agroecological modelling- stylish application or helpful tool? Computers and Electronics in Agriculture 29, 73–97 (2000)

    Article  Google Scholar 

  • Seginer, I.: Some artificial neural network applications to greenhouse environmental control. Computers and Electronics in Agriculture 18, 167–186 (1997)

    Article  Google Scholar 

  • Shamseldin, A.Y.: Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology 199, 272–294 (1997)

    Article  Google Scholar 

  • Shearer, J.R., et al.: Yield Prediction Using A Neural Network Classifier Trained Using Soil Landscape Features and Soil Fertility Data Annual International Meeting, Midwest Express Center. ASAE Paper No. 001084, Milwaukee, Wisconsin (2000)

    Google Scholar 

  • Tien, B.T., van Straten, G.: A NeuroFuzzy Approach to Identify Lettuce Growth and Greenhouse Climate. Artificial Intelligence Review 12, 71–93 (1998)

    Article  MATH  Google Scholar 

  • Timm, L.C., et al.: Neural network and state-space models for studying relationships among soil properties. Scientia Agricola (Piracicaba, Braz.) 63, 386–395 (2006)

    Google Scholar 

  • Tourenq, C., et al.: Use of artificial neural networks for predicting rice crop damage by greater flamingos in the Camargue, France. Ecological Modelling 120, 349–358 (1999)

    Article  Google Scholar 

  • Uno, Y., et al.: Artificial neural networks to predict corn yield from Compact Airborne Spectrographic Imager data. Computers and Electronics in Agriculture 47, 149–161 (2005)

    Article  Google Scholar 

  • Veronez, M.R., et al.: Artificial Neural Networks applied in the determination of Soil Surface Temperature – SST. In: 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Lisboa (2006)

    Google Scholar 

  • Vesanto, J.: SOM-based data visualization methods. Intelligent Data Analysis 3, 111–126 (1999)

    Article  MATH  Google Scholar 

  • Vesanto, J., Alhoniemi, E.: Clustering of the Self-Organizing Map. IEEE Transactions on neural networks 11, 568–600 (2000)

    Article  Google Scholar 

  • Yang, C.C., et al.: Development of a herbicide application map using artificial neural networks and fuzzy logic. Agricultural Systems 76, 561–574 (2003)

    Article  Google Scholar 

  • Yang, C.C., et al.: Application Of Artificial Neural Networks For Simulation Of Soil Temperature. Trans. of the ASAE 40, 649–656 (1997a)

    Google Scholar 

  • Yang, C.-C., et al.: An artificial neural network model for simulating pesticide concentrations in soil. Transactions of the ASAE 40, 1285–1294 (1997b)

    Google Scholar 

  • Zaidi, M.A., Murase, H., Honami, N.: Neural Network Model for the Evaluation of Lettuce Plant Growth. Journal of Agricultural Engineering Research 74, 237–242 (1999)

    Article  Google Scholar 

  • Zee, F., Bubenheim, D.: Plant Growth Model Using Artificial Neural Networks (1997)

    Google Scholar 

  • Zhai, Y., et al.: Soil texture classification with artificial neural networks operating on remote sensing data. Computers and Electronics in Agriculture 54, 53–68 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bhanu Prasad

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daniel, J., Andrés, PU., Héctor, S., Miguel, B., Patrick, V.D., Marco, T. (2008). A Survey of Artificial Neural Network-Based Modeling in Agroecology. In: Prasad, B. (eds) Soft Computing Applications in Industry. Studies in Fuzziness and Soft Computing, vol 226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77465-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77465-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77464-8

  • Online ISBN: 978-3-540-77465-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics