Skip to main content

Robot Navigation in Multi-terrain Outdoor Environments

  • Chapter
Experimental Robotics

Summary

This paper presents a methodology for motion planning in outdoor environments that takes into account specific characteristics of the terrain. Instead of decomposing the robot configuration space into “free” and “occupied”, we consider the existence of several regions with different navigation costs. Costs are determined experimentally by navigating the robot through the regions and measuring the influence of the terrain on its motion. In this paper we measure the robot vertical acceleration, which reflects the terrain roughness. A path planning algorithm is used to determine a sequence of triangles that minimize the navigation cost. Robot control is accomplished by a piecewise continuous vector field that drives the robot through those regions. This vector field allows the robot velocity to change according to the characteristics of the terrain. Experimental results with a differential driven, all terrain mobile robot illustrate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bastow, D., Howard, G.P.: Car Suspension and Handling. Pentech Press, London (1993)

    Google Scholar 

  2. Belta, C., Isler, V., Pappas, G.J.: Discrete abstractions for robot motion planning and control in polygonal environments. IEEE Transactions on Robotics 21(5), 864–874 (2005)

    Article  Google Scholar 

  3. Esposito, J.M., Kumar, V.: A method for modifying closed-loop motion plans to satisfy unpredictable dynamic constraints at runtime. In: IEEE International Conference on Robotics and Automation, pp. 1691–1696 (2002)

    Google Scholar 

  4. Fonseca, A.R., Pimenta, L.C.A., Mesquita, R.C., Saldanha, R.R., Pereira, G.A.S.: Path planning for mobile robots operating in outdoor environments using map overlay and triangular decomposition. In: Proceedings of the International Congress of Mechanical Engineering (COBEM 2005), Ouro Preto, Brazil (November 2005)

    Google Scholar 

  5. Gangnet, M., Hervé, J.-C., Pudet, T., van Thong, J.-M.: Incremental computation of planar maps. In: Proceedings of the 16th annual conference on Computer graphics and interactive techniques, pp. 345–354 (July 1989)

    Google Scholar 

  6. Guivant, J., Nebot, E., Nieto, J., Masson, F.: Navigation and mapping in large unstructured environments. The International Journal of Robotics Research 23(4-5), 449–472 (2004)

    Article  Google Scholar 

  7. Guo, Y., Parker, L.E., Jung, D., Dong, Z.: Performance-based rough terrain navigation for nonholonomic mobile robots. In: Proceedings of the IEEE Industrial Electronics Society, pp. 2811–2816 (2003)

    Google Scholar 

  8. Ida, N., Bastos, J.P.A.: Electromagnetics and Calculation of Fields. Springer, Heidelberg (1992)

    Google Scholar 

  9. Kobilarov, M.B., Sukhatme, G.S.: Near time-optimal constrained trajectory planning on outdoor terrain. In: Proceeding of the IEEE International Conference on Robotics and Automation, pp. 1833–1840 (2005)

    Google Scholar 

  10. Mitchell, J.S.B.: The weighted region problem: finding shortest paths through a weighted planar subdivision. Journal of the Association for Computing Machinery 38(1), 18–73 (1991)

    MATH  MathSciNet  Google Scholar 

  11. Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  12. Shewchuk, J.R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  13. Yahja, A., Singh, S., Stentz, A.: An efficient on-line path planner for outdoor mobile robots. Robotics and Autonomous Systems 32, 129–143 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oussama Khatib Vijay Kumar Daniela Rus

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pereira, G.A.S. et al. (2008). Robot Navigation in Multi-terrain Outdoor Environments. In: Khatib, O., Kumar, V., Rus, D. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77457-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77457-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77456-3

  • Online ISBN: 978-3-540-77457-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics