Skip to main content

Recent Advances in the Relations between Bright Sunshine Hours and Solar Irradiation

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Abdalla YAG, Baghdady MK (1985) Global and diffuse solar radiation and in Doha. Solar Wind. Technol. 3: 267.

    Google Scholar 

  • Akinoglu BG (1992a) On the random measurements of Robitzsch pyranograps. Proc. Of the 2nd World Renewable Energy Congress. Reading, UK, Pergamon Press, Oxford, p. 2726–2730.

    Google Scholar 

  • Akinoglu BG (1992b) Quadratic variation of global solar radiation with bright sunshine hours. Proc. Of the 2nd World Renewable Energy Congress. Reading, UK, Pergamon Press, Oxford, p. 2774–2778.

    Google Scholar 

  • Akinoglu BG (1991) A review of sunshine-based models used to estimate monthly average global solar radiation, Renewable Energy 1: 479–497.

    Article  Google Scholar 

  • Akinoglu BG (1993) A physical formalism for the modified Angström Equation to estimate solar radiation. Doga-Tr. J. of Physics 17: 345–355.

    Google Scholar 

  • Akinoglu BG (1990b) A further comparison and discussion of models to estimate to estimate global solar radiation. Energy 15: 865–872.

    Article  Google Scholar 

  • Akinoglu BG (2004) Effect of climate type and latitude on monthly average daily global solar radiation for five different climates in USA. Proc. Of ISES Asia-Pacific, October, Korean Solar Energy Society. GwangJu, South Korea, p689–695.

    Google Scholar 

  • Akinoglu BG and Ecevit A (1989) Comparison and discussion of quadratic models to estimate global solar radiation. Proc. Of 9th Int. Conf. on Energy and Env., Miami-USA.

    Google Scholar 

  • Akinoglu BG and Ecevit A (1990a) Construction of a quadratic model using modified Angström coefficients to estimate global solar radiation, Solar Energy 45: 85–92.

    Article  Google Scholar 

  • Akinoglu BG and Ecevit A (1993) Comparison and Discussion of the Eight Sunshine-based Correlations of Global Radiation. Doga-Turkish Journal of Physics 17: 79–95.

    Google Scholar 

  • Akinoglu BG, Oguz C, Oktik S (2000), Relations between monthly average hourly solar radiation, hourly bright sunshine and air mass for Mugla-Turkey. Proc. World Renewable Energy Congress VI (WREC 2000), July, Brighton, UK, p2469–2472.

    Google Scholar 

  • Aksoy B (1997), Estimated monthly average global solar radiation for Turkey and its comparison with observations. Renewable Energy 10: 625–633.

    Article  Google Scholar 

  • Aksoy B (1999) Analysis of Changes in Sunshine Duration Data for Ankara, Turkey. Theor. Appl. Climatol. 64: 229–237.

    Article  Google Scholar 

  • Aksoy B (1997) Variations and trends in global solar radiation for Turkey, Theor. Appl. Climatol. 58: 71–77.

    Article  Google Scholar 

  • Angström A (1924) Solar and terrestrial radiation. Quart. J. Roy. Met. Soc. 50: 121–126.

    Article  Google Scholar 

  • Angström A (1956) On the computation of global radiation from records of sunshine, Arkiv För Geofysik, Band 2 nr 22, 471–479.

    Google Scholar 

  • Atwater MA and Ball JT (1978) A numerical solar radiation model based on standard meteorological observations. Solar Energy 21: 163–170.

    Article  Google Scholar 

  • Badescu V (1999) Correlations to estimate monthly mean daily solar global irradiation: application to Romania. Energy 24: 883–893.

    Article  Google Scholar 

  • Badescu V (1988) Comment on the statistical indicators used to evaluate the accuracy of solar radiation computing models. Solar Energy 40: 479–480.

    Article  Google Scholar 

  • Bird RE (1984) A simple solar spectral model for direct-normal diffuse horizontal irradiance. Solar Energy 32: 461–471.

    Article  Google Scholar 

  • Brunt D (1934) Physical and Dynamical Meteorology. Table 2, p. 100.

    Google Scholar 

  • Chen LX, Li LW, Zhu WQ, Zhou X J, Zhou ZJ and Liu HL (2006) Seasonal trends of climate change in the Yangtze Delta and its adjacent regions and their formation mechanisms. Meteorol. Atmos. Phys.: 92, 11–23.

    Article  Google Scholar 

  • Chen R, Kang H, Ji X, Yang J, Zhang Z (2006) Trends of the global solar radiation and sunshine hours in 1961–1998 and their relationships in China. Energy. Conv. Mgmt. 47: 2859–2866.

    Article  Google Scholar 

  • Coulson KL (1975) Solar and Terrestrial Radiation. Academic Press, New York.

    Google Scholar 

  • Davies AJ and McKay DC (1982) Estimating solar irradiance and componenets. Solar Energy 29: 55–64.

    Article  Google Scholar 

  • Davies JA, Abdel-Wahab M and McKay DC. (1984) Estimating Solar Irradiation on Horizontal Surface, Int. J. Solar Energy 2: 405–424.

    Google Scholar 

  • Duffie JA and Beckman WA (1991) Solar Engineering of thermal processes. John Wiley and Sons, New York.

    Google Scholar 

  • Fritz S (1949) The albedo of the planet earth and clouds. J. Meteor. 6: 277–282.

    Google Scholar 

  • Gopinhathan KK (1988) A general formula for computing the coefficients of the correlation connecting global solar radiation to sunshine duration. Solar Energy 41: 499–503.

    Article  Google Scholar 

  • Gueymard C (1993a) Analysis of monthly average solar radiation and bright sunshine for different thresholds at Cape Canevral, Florida, Solar Energy 51: 139–145.

    Article  Google Scholar 

  • Gueymard AC (2003a) Direct solar transmittance and irradiance with broadband models. Part I: detailed theoretical performance assessment. Solar Energy 74: 355–379.

    Article  Google Scholar 

  • Gueymard AC (2003b) Direct solar transmittance and irradiance predictions with broadband models. Part II: validation with high quality measurements. Solar Energy 74: 381–395.

    Article  Google Scholar 

  • Gueymard C, Jindra P and Estrada-Cajigal V (1995), A critical look at recent interpretations of the Angström approach and its future in global solar radiation prediction, Solar Energy 54:357–363.

    Article  Google Scholar 

  • Gueymard C (1993b) Mathematically integrable parameterization of clear-sky beam and global irradiances and its use in daily irradiation applications. Solar Energy 50:385–397.

    Article  Google Scholar 

  • Gueymard C (1989) A two-band model for the calculation of clear sky solar irradiance, illuminance, and photosynthetically active radiation at the Earth’s surface. Solar Energy 43: 253–265.

    Article  Google Scholar 

  • Handbook of Methods of Estimating Solar Radiation (1984), Swedish Council for Building research. International Energy Agency, Solar R. and D., Task V, Subtask B, Stockholm, Sweden.

    Google Scholar 

  • Hay JE and Wardle DI (1982) An assessment of the uncertainty im measurements of solar radiation. Solar Energy 29, 271–278.

    Article  Google Scholar 

  • Houghton HG (1954) The annual heat balance of the northern hemisphere, J. Meteor. 11: 1–9.

    Google Scholar 

  • Ineichen P, Guisan O and Perez R (1990) Ground-reflected radiation and albedo. Solar Energy 44: 207–214.

    Article  Google Scholar 

  • Iqbal M (1979) Correlation of average diffuse and beam radiation with hours of bright sunshine. Solar Energy 23: 169–173.

    Article  Google Scholar 

  • Jain PC (1990) A model for diffuse and global irradiation on horizontal surface. Solar Energy 45: 301–308.

    Article  Google Scholar 

  • James F and Roos M (1977) MINUIT: A system for function minimization and analysis of the parameter errors and correlation, Cern Computer Center Program Library, Long Write-Up, D-506.

    Google Scholar 

  • Kasten F and Duffie JA (1993) Editorial, Solar Energy 50, 383.

    Article  Google Scholar 

  • Kimball HH (1919) Variations in the total and luminous solar radiation with geographical position in the United States. Monthly Weather Review 47: 769–793.

    Article  Google Scholar 

  • Lacis AA. and Hansen JA. (1974) A parametrization for the absorption of solar radiation in the Earth’s atmosphere. J. Atmos. Sci. 31: 118–133.

    Article  Google Scholar 

  • Leckner B (1978) The spectral distribution of solar radiation at the Erath surface-Elements of a model. Solar Energy 20: 143–150.

    Article  Google Scholar 

  • Madkour MA., El-Metwally M, Hamed AB (2006) Comparative study on different models for estimation of direct normal incidence (DNI) over Egypt Atmosphere. Renew. Energy 31: 361–382.

    Article  Google Scholar 

  • Martinez-Lozano JA, Tena F, Onrubia JE and De La Rubia J (1984) The historical evolution of the Angström formula and its modifications: Review and bibliography, Agric. Forest. Meteorol., 33: 109–128.

    Google Scholar 

  • Monteith JL (1962) Attenuation of solar radiation. Quart. J. Roy. Meteorol. Soc. 88: 508–521.

    Article  Google Scholar 

  • Mueller RW et al. (2004) Rethinking satellite-based solar irradiance modeling-The SOLIS clear sky model. Remote sensing of Environment 91: 160–174.

    Article  Google Scholar 

  • Ogelman H, Ecevit A and Tasdemiroglu E (1984) A new method for estimating solar radiation from bright sunshine data. Solar Energy 33: 619–625.

    Article  Google Scholar 

  • Page J (2005) First conference on measurement and modeling of solar radiation and daylight “Challenges for the 21st Century. Energy 30: 1501–1515.

    Article  Google Scholar 

  • Painter HE (1981) The performance of a Campbell-Stokes sunshine recorder compared with a simultaneous record of the normal incidence irradiation. Meteor. Mag. 110: 102–109.

    Google Scholar 

  • Paulescu M and Schlett Z (2003) A simplified but accurate spectral solar irradiance model. Theor. Appl. Climatol. 75: 203–212.

    Article  Google Scholar 

  • Prescott JA (1940) Evaporation from a water surface in relation to solar radiation. Trans. Roy. Soc. S. A. 64: 114–118.

    Google Scholar 

  • Rietveld HR (1978) A new method to estimate the regression coefficients in the formula relating radiation to sunshine. Agric. Meteorol. 19: 479–480.

    Article  Google Scholar 

  • Suehrcke H (2000) On the relationship between duration of sunshine and solar radiation on the Earth’s surface: Angström’s equation revisited. Solar Energy 68: 417–425.

    Article  Google Scholar 

  • Tasdemiroglu E and Sever R (1989) Estimation of total solar radiation from bright sunshine hours in Turkey. Energy 14: 827–830.

    Article  Google Scholar 

  • Trewartha GT (1968) An introduction to climate, McGraw Hill, New York.

    Google Scholar 

  • Yang K, Huang GW and Tamai N (2001) A hybrid model for estimating global solar radiation, Solar Energy 70: 13–22.

    Article  Google Scholar 

  • Yang K, Koike T, Ye B (2006) Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agric. Forest. Meteorol. 137: 43–55.

    Article  Google Scholar 

  • Yang, K. (2007) Private communication, April 2007.

    Google Scholar 

  • Yorukoglu M, Celik AN (2006), A critical review on the estimation of daily global solar radiation from sunshine duration. Energy Conv. Mgmt. 47: 2441–2450.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akinoglu, B.G. (2008). Recent Advances in the Relations between Bright Sunshine Hours and Solar Irradiation. In: Badescu, V. (eds) Modeling Solar Radiation at the Earth’s Surface. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77455-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77455-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77454-9

  • Online ISBN: 978-3-540-77455-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics