Skip to main content

Validation and Ranking Methodologies for Solar Radiation Models

  • Chapter
Modeling Solar Radiation at the Earth’s Surface

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelrahman MA, Said SA, Shuaib AN (1988) Comparison between atmospheric turbidity coefficients of desert and temperate climates. Solar Energy 40: 219–225

    Article  Google Scholar 

  • Alados I, Olmo FJ, Foyo-Moreno I, Alados-Arboledas L (2000) Estimation of photosynthetically active radiation under cloudy conditions. Agric. For. Meteorol. 102: 39–50

    Article  Google Scholar 

  • Alados-Arboledas L, Olmo FJ, Alados I, Pérez M (2000) Parametric models to estimate photosynthetically active radiation in Spain. Agric. For. Meteorol. 101: 187–201

    Article  Google Scholar 

  • ASHRAE (2005) Handbook of Fundamentals, SI Edition. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA

    Google Scholar 

  • Atwater MA, Ball JT (1978) A numerical solar radiation model based on standard meteorological observations. Solar Energy 21: 163–170

    Article  Google Scholar 

  • Badescu V (1997) Verification of some very simple clear and cloudy sky models to evaluate global solar irradiance. Solar Energy 61: 251–264

    Article  Google Scholar 

  • Battles FJ, Olmo FJ, Tovar J, Alados-Arboledas L (2000) Comparison of cloudless sky parameterizations of solar irradiance at various Spanish midlatitude locations. Theor. Appl. Climatol. 66: 81–93

    Article  Google Scholar 

  • Bellocchi G, Acutis M, Fila G, Donatelli M (2002) An indicator of solar radiation model performance based on a fuzzy expert system. Agron. J. 94: 1222–1223

    Article  Google Scholar 

  • Bevington PR, Robinson DK (2003) Data reduction and error analysis for the physical sciences. McGraw-Hill

    Google Scholar 

  • BIPM (1995) Guide to the expression of uncertainty in measurement. ISBN 92-67-10188-9, International Bureau of Weights and Measures (BIPM), International Standards Organization

    Google Scholar 

  • Bird RE, Hulstrom RL (1981a) A simplified clear sky model for direct and diffuse insolation on horizontal surfaces. SERI TR-642-761 (Available online at http://rredc.nrel.gov/solar/models/clearsky), Solar Energy Research Institute

    Google Scholar 

  • Bird RE, Hulstrom RL (1981b) Review, evaluation, and improvement of direct irradiance models Trans. ASME, J. Solar Energy Engng. 103: 182–192

    Article  Google Scholar 

  • Bristow LL, Campbell GS (1984) On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. Forest Meteorol. 31: 159–166

    Article  Google Scholar 

  • Claywell R, Muneer T, Asif M (2005) An efficient method for assessing the quality of large solar irradiance datasets. Trans. ASME, J. Solar Energy Engng. 127: 150–152

    Article  Google Scholar 

  • Collares-Pereira M, Rabl A (1979) The average distribution of solar radiation—correlations between diffuse and hemispherical and between daily and hourly insolation values. Solar Energy 22: 155–164

    Article  Google Scholar 

  • Crandall KC, Seabloom RW (1970) Engineering fundamentals in measurement, probability, statistics, and dimensions. McGraw Hill

    Google Scholar 

  • Davies JA, Schertzer W, Nunez M (1975) Estimating global solar radiation. Bound. Layer Meteor. 9: 33–52

    Article  Google Scholar 

  • Davies JA, Hay JE (1979) Calculation of the solar radiation incident on a horizontal surface. Proc. First Canadian Solar Radiation Data Workshop, April 17–19, 1979, Canadian Atmospheric Environment Service

    Google Scholar 

  • Davies JA, McKay DC (1982) Estimating solar irradiance and components. Solar Energy 29: 55–64

    Article  Google Scholar 

  • Davies JA, Abdel-Wahab M, McKay DC (1984) Estimating solar irradiation on horizontal surfaces. Int. J. Solar Energy 2: 405–424

    Google Scholar 

  • Davies JA, McKay DC, Luciani G, Abdel-Wahab M (1988) Validation of models for estimating solar radiation on horizontal surfaces. IEA Task IX Final Report, Atmospheric Environment Service, Downsview, Ont.

    Google Scholar 

  • Davies JA, McKay DC (1989) Evaluation of selected models for estimating solar radiation on horizontal surfaces. Solar Energy 43: 153–168

    Article  Google Scholar 

  • De Miguel A, Bilbao J, Aguiar R, Kambezidis HD, Negro E (2001) Diffuse solar irradiation model evaluation in the North Mediterranean belt area. Solar Energy 70: 143–153

    Article  Google Scholar 

  • Fila G, Bellocchi G, Donatelli M, Acutis M (2003) IRENE_DLL: A class library for evaluating numerical estimates. Agron. J. 95: 1330–1333

    Article  Google Scholar 

  • Fox J (1997) Applied regression analysis, linear models, and related methods. Sage Publ. See also http://www.princeton.edu/∼ slynch/SOC_504/multicol linearity.pdf

    Google Scholar 

  • González J-A, Calbó J (1999) Influence of the global radiation variability on the hourly diffuse fraction correlations. Solar Energy 65: 119–131

    Article  Google Scholar 

  • Gopinathan KK, Soler A (1995) Diffuse radiation models and monthly-average, daily, diffuse data for a wide latitude range. Energy 20: 657–667

    Article  Google Scholar 

  • Gordon J, ed (2001) Solar energy—The state of the art, ISES position papers. James & James and International Solar Energy Society, pp Pages

    Google Scholar 

  • Grenier JC, de la Casinière A, Cabot T (1994) A spectral model of Linke’s turbidity factor and its experimental implications. Solar Energy 52: 303–314

    Article  Google Scholar 

  • Gueymard CA (1987) An anisotropic solar irradiance model for tilted surfaces and its comparison with selected engineering algorithms. Solar Energy 38: 367–386. Erratum, Solar Energy, 40, 175 (1988)

    Article  Google Scholar 

  • Gueymard CA (1989) A two-band model for the calculation of clear sky solar irradiance, illuminance, and photosynthetically active radiation at the Earth’s surface. Solar Energy 43: 253–265

    Article  Google Scholar 

  • Gueymard CA (1993) Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data. Solar Energy 51: 121–138

    Article  Google Scholar 

  • Gueymard CA, Jindra P, Estrada-Cajigal V (1995) A critical look at recent interpretations of the Ångström approach and its future in global solar radiation prediction. Solar Energy 54: 357–363

    Article  Google Scholar 

  • Gueymard CA (1998) Turbidity determination from broadband irradiance measurements: A detailed multicoefficient approach. J. Appl. Meteorol. 37: 414–435

    Article  Google Scholar 

  • Gueymard CA (2000) Prediction and performance assessment of mean hourly global radiation. Solar Energy 68: 285–303

    Article  Google Scholar 

  • Gueymard CA (2001) Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Solar Energy 71: 325–346

    Article  Google Scholar 

  • Gueymard CA (2003a) Direct solar transmittance and irradiance predictions with broadband models. Pt 2: Validation with high-quality measurements. Solar Energy 74: 381–395. Corrigendum: Solar Energy 76, 515 (2004)

    Article  Google Scholar 

  • Gueymard CA (2003b) Direct solar transmittance and irradiance predictions with broadband models. Pt 1: Detailed theoretical performance assessment. Solar Energy 74: 355–379. Corrigendum: Solar Energy 76, 513 (2004)

    Article  Google Scholar 

  • Gueymard CA, Kambezidis HD (2004) Solar spectral radiation. In: Muneer T (ed) Solar radiation and daylight models. Elsevier, pp 221–301

    Google Scholar 

  • Gueymard CA (2005a) Importance of atmospheric turbidity and associated uncertainties in solar radiation and luminous efficacy modelling. Energy 30: 1603–1621

    Article  Google Scholar 

  • Gueymard CA (2005b) Interdisciplinary applications of a versatile spectral solar irradiance model: A review. Energy 30, 1551–1576

    Article  Google Scholar 

  • Gueymard CA (2008) REST2: High performance solar radiation model for cloudless-sky irradiance, illuminance and photosynthetically active radiation—Validation with a benchmark dataset. Solar Energy (in press)

    Google Scholar 

  • Gueymard CA, Myers D (2007) Performance assessment of routine solar radiation measurements for improved solar resource and radiative modeling. Proc. Solar 2007 Conf., Cleveland, OH, American Solar Energy Society

    Google Scholar 

  • Hay JE, McKay DC (1985) Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies. Int. J. Solar Energy 3: 203–240

    Google Scholar 

  • Hay JE, McKay DC (1986) Calculation of solar irradiances for inclined surfaces: verification of models which use hourly and daily data. Report to International Energy Agency, SHCP Task IX, Atmospheric Environment Service, Canada

    Google Scholar 

  • Hay JE (1993a) Solar radiation data: validation and quality control. Renew. Energy 3: 349–355

    Article  Google Scholar 

  • Hay JE (1993b) Calculating solar radiation for inclined surfaces: practical approaches. Renew. Energy 3: 373–380

    Article  Google Scholar 

  • Hinzpeter H (1950) Über Trübungsbestimmungen in Potsdam in dem Jahren 1946 und 1947. Zeit. Meteorol. 4: 1–8

    Google Scholar 

  • Houghton HG (1954) On the annual heat balance of the northern hemisphere. J. Meteorol. 11: 1–9

    Google Scholar 

  • Hoyt DV (1978) A model for the calculation of solar global insolation. Solar Energy 21 27–35

    Article  Google Scholar 

  • Ianetz A, Kudish AI (1994) Correlations between values of daily horizontal beam and global radiation for Beer Sheva, Israel. Energy 19: 751–764

    Google Scholar 

  • Ianetz A, Lyubansky V, Setter I, Kriheli B, Evseev EG, Kudish AI (2007) Inter-comparison of different models for estimating clear sky solar global radiation for the Negev region of Israel. Energy Conv. Mngmt. 48: 259–268

    Article  Google Scholar 

  • Ineichen P, Guisan O, Razafindraibe A (1984) Indice de clarté. CUEPE Rep. No. 20, University of Geneva, Switzerland

    Google Scholar 

  • Ineichen P, Perez R, Seals R (1987) The importance of correct albedo determination for adequately modeling energy received by tilted surfaces. Solar Energy 39: 301–305

    Article  Google Scholar 

  • Ineichen P (2006) Comparison of eight clear sky broadband models against 16 independent data banks. Solar Energy 80: 468–478

    Article  Google Scholar 

  • Iqbal M (1983) An introduction to solar radiation. Academic Press

    Google Scholar 

  • Iziomon MG, Mayer H (2002) Assessment of some global solar radiation parameterizations. J. Atmos. Solar Terr. Phys. 64: 1631–1643

    Article  Google Scholar 

  • Jacovides CP, Kontoyiannis H (1995) Statistical procedures for the evaluation of evapotranspiration computing models. Agric. Water Mgmt. 27: 365–371

    Article  Google Scholar 

  • Jacovides CP, Hadjioannou L, Pashiardis S, Stefanou L (1996) On the diffuse fraction of daily and monthly global radiation for the island of Cyprus. Solar Energy 56: 565–572

    Article  Google Scholar 

  • Jacovides CP (1998) Reply to comment on “Statistical procedures for the evaluation of evapotranspiration computing models”. Agric. Water Mgmt. 37: 95–97

    Article  Google Scholar 

  • Jeter SM, Balaras CA (1986) A regression model for the beam transmittance of the atmosphere based on data for Shenandoah, Georgia, U.S.A. Solar Energy 37: 7–14

    Article  Google Scholar 

  • Kambezidis HD, Psiloglou BE, Gueymard C (1994) Measurements and models for total solar irradiance on inclined surface in Athens, Greece. Solar Energy 53: 177–185

    Article  Google Scholar 

  • Kasten F (1980) A simple parameterization of the pyrheliometric formula for determining the Linke turbidity factor. Meteorol. Rdsch. 33: 124–127

    Google Scholar 

  • Kasten F, Czeplak G (1980) Solar and terrestrial radiation dependent on the amount and type of cloud. Solar Energy 24: 177–189

    Article  Google Scholar 

  • Kasten F (1983) Parametrisierung der Globalstrahlung durch Bedeckungsgrad und Trübungsfaktor. Ann. Meteorol. 20: 49–50

    Google Scholar 

  • Kasten F, Young AT (1989) Revised optical air mass tables and approximation formula. Appl. Opt. 28: 4735–4738

    Google Scholar 

  • Katz M, Baille A, Mermier M (1982) Atmospheric turbidity in a semi-rural site—Evaluation and comparison of different turbidity coefficients. Solar Energy 28: 323–327

    Article  Google Scholar 

  • Lacis AL, Hansen JE (1974) A parameterization of absorption of solar radiation in the Earth’s atmosphere. J. Atmos. Sci. 31: 118–133

    Article  Google Scholar 

  • Li Z, Whitlock CH, Charlock TP (1995) Assessment of the global monthly mean surface insolation estimated from satellite measurements using Global Energy Balance Archive data. J. Clim. 8: 315–328

    Article  Google Scholar 

  • Lopez G, Rubio MA, Battles FJ (2000) Estimation of hourly direct normal from measured global solar irradiance in Spain. Renew. Energy 21: 175–186

    Google Scholar 

  • Louche A, Maurel M, Simonnot G, Peri G, Iqbal M (1987) Determination of Angström’s turbidity coefficient from direct total solar irradiance measurements. Solar Energy 38: 89–96

    Article  Google Scholar 

  • Loutzenhiser PG, Manz H, Felsmann C, Strachan PA, Frank T, Maxwell GM (2007) Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation. Solar Energy 81: 254–267

    Article  Google Scholar 

  • Ma CCY, Iqbal M (1984) Statistical comparison of solar radiation correlations Monthly average global and diffuse radiation on horizontal surfaces. Solar Energy 33: 143–148

    Article  Google Scholar 

  • Martinez-Lozano JA, Tena F, Onrubia JE, Rubia JDL (1984) The historical evolution of the Angström formula and its modifications: Review and bibliography. Agr. For. Meteorol. 33: 109–128

    Article  Google Scholar 

  • Maxwell EL (1987) Quasi-physical model for converting hourly global horizontal to direct normal insolation In: Hayes J, Andrejko DA (eds) Proc. Solar ’87 Conf., Portland OR, American Solar Energy Society 35–46

    Google Scholar 

  • Maxwell EL (1998) METSTAT—The solar radiation model used in the production of the National Solar Radiation Data Base (NSRDB). Solar Energy 62: 263–279

    Article  Google Scholar 

  • Michalsky JJ, Anderson GP, Barnard J, Delamere J, Gueymard C, Kato S, Kiedron P, McCormiskey A, Richiazzi P (2006) Shortwave radiative closure studies for clear skies during the Atmospheric Radiation Measurement 2003 Aerosol Intensive Observation Period. J. Geophys. Res. 111D: doi:10.1029/ 2005JD006341

    Google Scholar 

  • Molineaux B, Ineichen P, O’Neill N (1998) Equivalence of pyrheliometric and monochromatic aerosol optical depths at a single key wavelength. Appl. Opt. 37: 7008–7018

    Article  Google Scholar 

  • Monteith JL (1962) Attenuation of solar radiation: a climatology study. Quart. J. Roy. Meteor. Soc. 88: 508–521

    Article  Google Scholar 

  • Muneer T, Gul MS, Kubie J (2000) Models for estimating solar radiation and illuminance from meteorological parameters. Trans. ASME J. Sol. Energy Eng. 122: 146–153

    Article  Google Scholar 

  • Muneer T, Fairooz F (2002) Quality control of solar radiation and sunshine measurements—Lessons learnt from processing worldwide databases. Build. Serv. Eng. Res. Technol. 23: 151–166

    Article  Google Scholar 

  • Muneer T, ed (2004) Solar radiation and daylight models, 2nd edn. Elsevier

    Google Scholar 

  • Muneer T, Younes S, Munawwar S (2007) Discourses on solar radiation modeling. Renew. Sustain. Energy Rev. 11: 551–602

    Article  Google Scholar 

  • Myers RH (1986) Classical and modern regression with applications. PWS Publishers

    Google Scholar 

  • Notton G, Muselli M, Louche A (1996) Two estimation methods for monthly mean hourly total irradiation on tilted surfaces from monthly mean daily horizontal irradiation from solar radiation data of Ajaccio, Corsica. Solar Energy 57: 141–153

    Article  Google Scholar 

  • NREL (2007) National Solar Radiation Database 1991–2005 update: User’s manual. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  • Olmo FJ, Vida J, Foyo-Moreno I, Tovar J, Alados-Arboledas L (2001) Performance reduction of solar irradiance parametric models due to limitations in required aerosol data: case of the CPCR2 model. Theor. Appl. Climatol. 69: 253–263

    Article  Google Scholar 

  • Oreskes N, Schrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical methods in the Earth sciences. Science 263: 641–646

    Article  Google Scholar 

  • Perez R, Stewart R (1986) Solar irradiance conversion models. Solar Cells 18: 213–222

    Article  Google Scholar 

  • Perez R, Ineichen P, Seals R, Michalsky J, Stewart R (1990a) Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy 44: 271–289

    Article  Google Scholar 

  • Perez R, Seals R, Zelenka A, Ineichen P (1990b) Climatic evaluation of models that predict hourly direct irradiance from hourly global irradiance: Prospects for performance improvements. Solar Energy 44: 99–108

    Article  Google Scholar 

  • Perez R, Ineichen P, Maxwell EL, Seals R, Zelenka A (1992) Dynamic global-to-direct irradiance conversion models. ASHRAE Trans. 98 (1): 354–369

    Google Scholar 

  • Perez R, Seals R, Zelenka A (1997) Comparing satellite remote sensing and ground network measurements for the production of site/time specific irradiance data. Solar Energy 60: 89–96

    Article  Google Scholar 

  • Perez R, Kniecik M, Zelenka A, Renne D, George R (2001) Determination of the effective accuracy of satellite-derived global, direct, and diffuse irradiance in the Central United States. In: Campbell-Howe R (ed) Proc. Solar 2001 Conf., Washington D.C., American Solar Energy Society, Boulder, CO

    Google Scholar 

  • Perez R, Ineichen P, Moore K, Kmiecik M, Chain C, George R, Vignola F (2002) A new operational model for satellite derived irradiances, description and validation. Solar Energy 73: 307–317

    Article  Google Scholar 

  • Power HC (2001) Estimating clear-sky beam irradiation from sunshine duration. Solar Energy 71: 217–224

    Article  Google Scholar 

  • Psiloglou BE, Balaras CA, Santamouris M, Asimakopoulos DN (1996) Evaluation of different radiation and albedo models for the prediction of solar radiation incident on tilted surfaces, for four European locations. Trans. ASME, J. Solar Engng. 118: 183–189

    Google Scholar 

  • Reindl DT, Beckman WA, Duffie JA (1990) Evaluation of hourly tilted surface radiation models. Solar Energy 45: 9–17

    Article  Google Scholar 

  • Remund J, Wald L, Lefèvre M, Ranchin T, Page J (2003) Worldwide Linke turbidity information. Proc. ISES Conf., Gothenburg, Sweden, International Solar Energy Society

    Google Scholar 

  • Rigollier C, Bauer O, Wald L (2000) On the clear sky model of ESRA—European Solar Radiation Atlas—with respect to the Heliosat method. Solar Energy 68: 33–48

    Article  Google Scholar 

  • Santamouris M, Mihalakakou G, Psiloglou B, Eftaxias G, Asimakopoulos DN (1999) Modeling the global solar radiation on the Earth’s surface using atmospheric deterministic and intelligent data-driven techniques. J. Clim. 12: 3105–3116

    Article  Google Scholar 

  • Scharmer K, Greif J, ed (2000) The European Solar Radiation Atlas, Vol. 2. Presses de l’Ecole des Mines de Paris

    Google Scholar 

  • Skartveit A, Olseth JA, Capelak G, Rommel M (1996) On the estimation of atmospheric radiation from surface meteorological data. Solar Energy 56: 349–359

    Article  Google Scholar 

  • Soler A (1990) Statistical comparison for 77 European stations of 7 sunshine-based models. Solar Energy 45: 365–370

    Article  Google Scholar 

  • Stone RJ (1993) Improved statistical procedure for the evaluation of solar radiation estimation models. Solar Energy 51: 289–291

    Article  Google Scholar 

  • Stone RJ (1994) A nonparametric statistical procedure for ranking the overall performance of solar radiation models at multiple locations. Energy 19: 765–769

    Article  Google Scholar 

  • Suckling PW, Hay JE (1976) Modelling direct, diffuse, and total solar radiation for cloudless days. Atmosphere 14: 298–308

    Google Scholar 

  • Suckling PW, Hay JE (1977) A cloud layer-sunshine model for estimating direct, diffuse and total solar radiation. Atmosphere 15: 194–207

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106D7: 7183–7192

    Article  Google Scholar 

  • Thornton PE, Running SW (1999) An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. Forest Meteorol. 93: 211–228

    Article  Google Scholar 

  • Wang Q, Tenhunen J, Schmidt M, Kolcun O, Droesler M (2006) A model to estimate global radiation in complex terrain. Bound. Layer Meteorol. 119: 409–429

    Article  Google Scholar 

  • Watt D (1978) On the nature and distribution of solar radiation. U.S. DOE Report HCP/T2552-01, U.S. Department of Energy

    Google Scholar 

  • Wilcox W, Anderberg M, George R, Marion W, Myers D, Renné D, Lott N, Whitehurst T, Beckman W, Gueymard C, Perez R, Stackhouse P, Vignola F (2007) Completing production of the updated National Solar Radiation Database for the United States. Proc. Solar 2007 Conf., Cleveland, OH, American Solar Energy Society

    Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys. Geogr. 2: 184–194

    Google Scholar 

  • Willmott CJ (1982a) Some comments on the evaluation of model performance. Bull. Amer. Meteorol. Soc. 63: 1309–1313

    Article  Google Scholar 

  • Willmott CJ (1982b) On the climatic optimization of the tilt and azimuth of flat-plate solar collectors. Solar Energy 28: 205–216

    Article  Google Scholar 

  • Willmott CJ, Ackleson SG, Davi RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J. Geophys. Res. 90C: 8995–9005

    Google Scholar 

  • Yang K, Huang GW, Tamai N (2001) A hybrid model for estimating global solar radiation. Solar Energy 70: 13–22

    Article  Google Scholar 

  • Yang K, Koike T (2005) A general model to estimate hourly and daily solar radiation for hydrological studies. Water Resour. Res. 41: doi:10.1029/ 2005WR003976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gueymard, C.A., Myers, D.R. (2008). Validation and Ranking Methodologies for Solar Radiation Models. In: Badescu, V. (eds) Modeling Solar Radiation at the Earth’s Surface. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77455-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77455-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77454-9

  • Online ISBN: 978-3-540-77455-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics