Skip to main content

The Meteorological Radiation Model (MRM): Advancements and Applications

  • Chapter
Modeling Solar Radiation at the Earth’s Surface

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ångström A (1929) On the atmospheric transmission of sun radiation and on dust in the air. Geografis. Annal. 2: 156–166.

    Article  Google Scholar 

  • Ångström A (1930) On the atmospheric transmission of sun radiation. Geografis. Annal. 2 & 3: 130–159.

    Google Scholar 

  • Atwater MA and Brown PS (1974) Numerical computations of the latitudinal variations of solar radiation for an atmosphere of varying opacity. J. Appl. Meteorol. 13: 289–2914.

    Google Scholar 

  • Berland G and Danilchenco VY (1961) The continental distribution of solar radiation. Gidrometeorzdat, St. Peterburg.

    Google Scholar 

  • Bird RE and Hulstrom RL (1979) Application of Monte Carlo technique to insolation characterization and prediction. US SERI Tech. Report TR-642-761: 38.

    Google Scholar 

  • Bird RE and Hulstrom RL (1980) Direct insolation models. US SERI Tech. Report TR-335–344.

    Google Scholar 

  • Bird RE and Hulstrom RL (1981a) Review, evaluation and improvement of direct irradiance models. Trans. ASME, J. Sol. Energy Eng. 103: 182–192.

    Article  Google Scholar 

  • Bird RE and Hulstrom RL (1981b) A simplified clear-sky model for the direct and diffuse insolation on horizontal surfaces US SERI Tech. Report TR-642-761: 38.

    Google Scholar 

  • Dave JV (1979) Extensive data sets of the diffuse radiation in realistic atmospheric models with aerosols and common absorbing gases. Solar Energy 21: 361–369.

    Article  MathSciNet  Google Scholar 

  • Davies JA, Schertzer W and Nunez M (1975) Estimating global solar radiation. Boundary-Layer Meteorol. 9: 33–52.

    Article  Google Scholar 

  • Duffie JA and Beckman WA (1980) Solar engineering of thermal processes. J. Wiley, New York.

    Google Scholar 

  • ESRA-European Solar Radiation Atlas (1989) Commission of the European Communities, version I.

    Google Scholar 

  • Gates DM (1962) Energy exchange in the biosphere. Harper & Row, New York.

    Google Scholar 

  • Gueymard C (1993) Assessment of the accuracy and computing speed of simplified saturation vapour equations using a new reference dataset. J. Appl. Meteorol. 32: 1294–1300.

    Article  Google Scholar 

  • Gueymard C (1995) SMARTS2, a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Rep. FSEC-PF-270-95, Florida Solar Energy Center, Cocoa, USA.

    Google Scholar 

  • Gueymard C (2003) Direct solar transmittance and irradiance predictions with broadband model. Part I: detailed theoretical performance assessment. Solar Energy 74: 355–379.

    Article  Google Scholar 

  • Gul MS, Muneer T and Kambezidis HD (1998) Models for obtaining solar radiation from other meteorological data. Solar Energy 64: 99–108.

    Article  Google Scholar 

  • Iqbal M (1983) An introduction to solar radiation. Academic Press, New York.

    Google Scholar 

  • Kambezidis HD and Papanikolaou NS (1989) Total solar irradiance flux through inclined surfaces with arbitrary orientation in Greece: comparison between measurements and models. In: XIV Assembly of EGS, pp. 13–17, Barcelona, Spain.

    Google Scholar 

  • Kambezidis HD and Papanikolaou NS (1990a) Total solar irradiance on tilted planes in Greece. Technika Chronika B 10: 55-70 (in Greek).

    Google Scholar 

  • Kambezidis HD and Papanikolaou NS (1990b) Solar position and atmospheric refraction. Solar Energy 44: 143–144.

    Article  Google Scholar 

  • Kambezidis HD and Tsangrassoulis AE (1993) Solar position and right ascension. Solar Energy 50: 415–416.

    Article  Google Scholar 

  • Kambezidis HD, Founda DH and Papanikolaou NS (1993a) Linke and Unsworth-Monteith turbidity parameters in Athens. Q.J. Roy. Meteorol. Soc. 119: 367–374.

    Article  Google Scholar 

  • Kambezidis HD, Psiloglou BE, Tsangrassoulis AE, Logothetis MA, Sakellariou NK and Balaras CA (1993b) A meteorology to give solar radiation on titled plane from meteorological data. In: ISES World Congress, Farkas J. (ed), Budapest, Hungary, pp. 99–104.

    Google Scholar 

  • Kambezidis HD, Psiloglou BE and Synodinou BM (1997) Comparison between measurements and models of daily total irradiation on tilted surfaces in Athens, Greece. Renew. Energy 10: 505–518.

    Article  Google Scholar 

  • Kambezidis HD (1997) Estimation of sunrise and sunset hours for location on flat and complex terrain: review and advancement. Renew. Energy 11: 485–494.

    Article  Google Scholar 

  • Kambezidis HD (1998) The “Meteorological Radiation Model”. Bull. Hell. Assoc. Chart. Mech.-Electr. Engineers 3/2: 38–42 (in Greek).

    Google Scholar 

  • Kambezidis HD and Badescu V (2000) MRM: a new solar radiation computing model. Application to Romania. In: VII Conf. “Efficiency, comfort, energy preservation and environmental protection”, CONSPRESS (publ.), pp. 195–199.

    Google Scholar 

  • Kasten F (1966) A new table and approximate formula for relative optical air mass. Arch. Meteorol. Geophys. Bioklimatol. B 14: 206–223.

    Google Scholar 

  • Kasten F and Young AT (1989) Revised optical air mass tables and approximation formula. Appl. Optics 28: 124–1214.

    Google Scholar 

  • Lacis AA and Hansen JE (1974) A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci. 31: 118–132.

    Article  Google Scholar 

  • Leckner B (1978) Spectral distribution of solar radiation at the Earth’s surface-elements of a model. Solar Energy 20: 443–450.

    Article  Google Scholar 

  • McClatchey RA and Selby JE (1972) Atmospheric transmittance from 0.25 to 38.5μm: computer code LOWTRAN-2. Air Force Cambridge Laboratories, AFCRL-72-0745, Environment Research Paper, pp. 4214.

    Google Scholar 

  • Muir LR (1983) Comments on “The effect of the atmospheric refraction in the solar azimuth”. Solar Energy 30: 295.

    Article  Google Scholar 

  • Muneer T, Gul M, Kambezidis HD and Alwinkle S (1996) An all-sky solar meteorological radiation model for the United Kingdom. In: CIBSE/ASHRAE Joint National Conf., CIBSE/ASHRAE (Eds), Harrogate, UK, pp. 271–280.

    Google Scholar 

  • Muneer T (1997) Solar radiation and daylight models for the energy efficient design of buildings. 1st edn, Architectural Press, pp. 65–70.

    Google Scholar 

  • Muneer T, Gul MS and Kambezidis HD (1997) Solar radiation models based on meteorological data. In Proc. ISES World Congress, Taegon, Korea.

    Google Scholar 

  • Muneer T, Gul M and Kambezidis HD (1998) Evaluation of all-sky meteorological model against long-term measured hourly data. Energy Conv. & Manag. 39: 303–3114.

    Article  Google Scholar 

  • Paltridge GW and Platt CMR (1976) Radiative processes in meteorology and climatology. American Elsevier, New York.

    Google Scholar 

  • Perez R, Ineichen P, Seals R, Michalsky J and Stewart R (1990) Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy 44: 271–289.

    Article  Google Scholar 

  • Pisimanis DK, Notaridou VA and Lalas DP (1987) Estimating direct, diffuse and global solar radiation on an arbitrarily. Solar Energy 39: 159–172.

    Article  Google Scholar 

  • Psiloglou BE and Kambezidis HD (2007) Performance of the meteorological radiation model during the solar eclipse of 29 March 2006. Special issue on: The total solar eclipse of 2006 and its effects on the environment. In: Zerefos C, Mihalopoulos N, Monks P (eds). Atmospheric Chemistry and Physics 7: 6047–6059.

    Article  Google Scholar 

  • Psiloglou BE, Santamouris M and Asimakopoulos DN (1994) On the atmospheric water vapour transmission function for solar radiation models. Solar Energy 53: 445–453.

    Article  Google Scholar 

  • Psiloglou BE, Santamouris M and Asimakopoulos DN (1995a) Predicting the broadband transmittance of the uniformly-mixed gases (CO2, CO, N2O, CH4 and O2) in the atmosphere for solar radiation models. Renewable Energy 6: 63–70.

    Article  Google Scholar 

  • Psiloglou BE, Santamouris M and Asimakopoulos DN (1995b) On broadband Rayleigh scattering in the atmosphere for solar radiation modelling. Renewable Energy 6: 429–433.

    Article  Google Scholar 

  • Psiloglou BE, Santamouris M, Varotsos C and Asimakopoulos DN (1996) A new parameterisation of the integral ozone transmission. Solar Energy 56: 573–581.

    Article  Google Scholar 

  • Psiloglou BE, Santamouris M and Asimakopoulos DN (2000) Atmospheric broadband model for computation of solar radiation at the Earth’s surface. Application to Mediterranean climate. Pure Appl. Geophys. 157: 829–860.

    Article  Google Scholar 

  • Settle EP and Fenn RW (1975) Models of the atmospheric aerosol and their optical properties. In Proc. AGARD Conf. No. 183 on ‘’Optical propagation in the atmosphere”, 2.1–2.16.

    Google Scholar 

  • Van Heuklon TK (1979) Estimating atmospheric ozone for solar radiation models. Solar Energy 22: 63–68.

    Article  Google Scholar 

  • Walraven R (1978) Calculating the position of the sun. Solar Energy 20: 393–3914.

    Article  Google Scholar 

  • Watt D (1978) On the nature and distribution of solar radiation. H CP/T2552-01 US Dept. of Energy.

    Google Scholar 

  • Wilkinson BJ (1981) An improved FORTRAN program for the rapid calculation of the solar position. Solar Energy 27: 67–68.

    Article  Google Scholar 

  • Yang K, Huang GW and Tamai N (2001) A hybrid model for estimation of global solar radiation. Solar Energy 70: 13–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kambezidis, H.D., Psiloglou, B.E. (2008). The Meteorological Radiation Model (MRM): Advancements and Applications. In: Badescu, V. (eds) Modeling Solar Radiation at the Earth’s Surface. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77455-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77455-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77454-9

  • Online ISBN: 978-3-540-77455-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics