Permutation After RC4 Key Scheduling Reveals the Secret Key

  • Goutam Paul
  • Subhamoy Maitra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4876)

Abstract

A theoretical analysis of the RC4 Key Scheduling Algorithm (KSA) is presented in this paper, where the nonlinear operation is swapping among the permutation bytes. Explicit formulae are provided for the probabilities with which the permutation bytes after the KSA are biased to the secret key. Theoretical proofs of these formulae have been left open since Roos’s work (1995). Based on this analysis, an algorithm is devised to recover the l bytes (i.e., 8l bits, typically 5 ≤ l ≤ 16) secret key from the final permutation after the KSA with constant probability of success. The search requires O(24l) many operations which is the square root of the exhaustive key search complexity 28l. Further, a generalization of the RC4 KSA is analyzed corresponding to a class of update functions of the indices involved in the swaps. This reveals an inherent weakness of shuffle-exchange kind of key scheduling.

Keywords

Bias Cryptanalysis Key Scheduling Permutation RC4 Stream Cipher 

References

  1. 1.
    Fluhrer, S.R., McGrew, D.A.: Statistical Analysis of the Alleged RC4 Keystream Generator. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 19–30. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Fluhrer, S.R., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 1–24. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Golic, J.: Linear statistical weakness of alleged RC4 keystream generator. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    LAN/MAN Standard Committee. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, 1999 edn., IEEE standard 802.11 (1999)Google Scholar
  5. 5.
    Klein, A.: Attacks on the RC4 stream cipher (February 27, 2006) (last accessed on June 27, 2007), available at http://cage.ugent.be/~klein/RC4/
  6. 6.
    Mantin, I., Shamir, A.: A Practical Attack on Broadcast RC4. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Mantin, I.: A Practical Attack on the Fixed RC4 in the WEP Mode. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 395–411. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Mantin, I.: Predicting and Distinguishing Attacks on RC4 Keystream Generator. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Mantin, I.: Analysis of the stream cipher RC4. Master’s Thesis, The Weizmann Institute of Science, Israel (2001)Google Scholar
  10. 10.
    Mironov, I.: (Not So) Random Shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Paul, G., Rathi, S., Maitra, S.: On Non-negligible Bias of the First Output Byte of RC4 towards the First Three Bytes of the Secret Key. In: Proceedings of the International Workshop on Coding and Cryptography, pp. 285–294 (2007)Google Scholar
  12. 12.
    Paul, G., Maitra, S.: RC4 State Information at Any Stage Reveals the Secret Key. IACR Eprint Server, eprint.iacr.org, number 2007/208 (June 1, 2007)Google Scholar
  13. 13.
    Paul, S., Preneel, B.: Analysis of Non-fortuitous Predictive States of the RC4 Keystream Generator. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 52–67. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Paul, S., Preneel, B.: A New Weakness in the RC4 Keystream Generator and an Approach to Improve the Security of the Cipher. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Roos, A.: A class of weak keys in the RC4 stream cipher. Two posts in sci.crypt, message-id 43u1eh$1j3@hermes.is.co.za and 44ebge$llf@hermes.is.co.za (1995), available at http://marcel.wanda.ch/Archive/WeakKeys
  16. 16.
    Silverman., J., Friendly, A.: Introduction to Number Theory, 2nd edn., p. 56. Prentice Hall, Englewood Cliffs (2001)Google Scholar
  17. 17.
    Wagner, D.: My RC4 weak keys. Post in sci.crypt, message-id 447o1l$cbj@cnn.Princeton.EDU (September 26, 1995), available at http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Goutam Paul
    • 1
  • Subhamoy Maitra
    • 2
  1. 1.Department of Computer Science and Engineering, Jadavpur University, Kolkata 700 032India
  2. 2.Applied Statistics Unit, Indian Statistical Institute, 203, B T Road, Kolkata 700 108India

Personalised recommendations