Skip to main content

Algorithmic Search for Flexibility Using Resultants of Polynomial Systems

  • Conference paper
Automated Deduction in Geometry (ADG 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4869))

Included in the following conference series:

Abstract

This paper describes the recent convergence of four topics: polynomial systems, flexibility of three dimensional objects, computational chemistry, and computer algebra. We discuss a way to solve systems of polynomial equations with resultants. Using ideas of Bricard, we find a system of polynomial equations that models a configuration of quadrilaterals that is equivalent to some three dimensional structures. These structures are of interest in computational chemistry, as they represent molecules. We then describe an algorithm that examines the resultant and determines ways that the structure can be flexible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bikker, P.: On Bezout’s method for computing the resultant. RISC-Linz Report Series, Johannes Kepler University A-4040 Linz, Austria (1995)

    Google Scholar 

  2. Bricard, R.: Mémoire sur la théorie de l’octaèdre articulé. J. Math. Pures Appl. 3, 113–150 (1897), English translation: http://www.math.unm.edu/~vageli/papers/bricard.pdf

    Google Scholar 

  3. Buse, L., Elkadi, M., Mourrain, B.: Generalized resultants over unirational algebraic varieties. J. Symbolic Comp. 29, 515–526 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cauchy, A.-L.: Deuxième mémoire sur les polygones et les polyèdres. J. de l’École Polyt. 16(1813), 87–99

    Google Scholar 

  5. Connelly, R.: A counterexample to the rigidity conjecture for polyhedra. Publ. Math. I. H. E. S. 47, 333–338 (1978)

    Google Scholar 

  6. Coutsias, E.A., Seok, C., Wester, M.J., Dill, K.A.: Resultants and loop closure. International Journal of Quantum Chemistry 106(1), 176–189 (2005)

    Article  Google Scholar 

  7. Coutsias, E.A., Seok, C., Jacobson, M.J., Dill, K.A.: A Kinematic view of loop closure. Journal of Computational Chemistry 25(4), 510–528 (2004)

    Article  Google Scholar 

  8. Cromwell, P.R.: Polyhedra, pp. 222–224. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  9. Dill, K.A., Chan, H.S.: From Levinthal to pathways to funnels: The “new view” of protein folding kinetics. Nat. Struct. Biol. 4, 10–19 (1997)

    Article  Google Scholar 

  10. Dixon, A.L.: The eliminant of three quantics in two independent variables. Proc. London Math. Society 6, 468–478 (1908)

    Article  Google Scholar 

  11. Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using Dixon resultants. In: Proc. of the International Symposium on Symbolic and Algebraic Computation, A.C.M. Press, New York (1994)

    Google Scholar 

  12. Lagrange, J.-L.: Mécanique Analytique, Paris (1788)

    Google Scholar 

  13. Leach, A.: Molecular Modeling and Simulation, Cambridge (2004)

    Google Scholar 

  14. Lewis, R.H.: Computer algebra system Fermat. http://home.bway.net/lewis/

  15. Lewis, R.H.: Fermat code for Solve. http://home.bway.net/lewis/

  16. Lewis, R.H.: Heuristics to accelerate the Dixon resultant. to appear in Mathematics and Computers in Simulation

    Google Scholar 

  17. Lewis, R., Stiller, P.: Solving the recognition problem for six lines using the Dixon resultant. Mathematics and Computers in Simulation 49, 203–219 (1999)

    Article  MathSciNet  Google Scholar 

  18. Maksimov, I.G.: Polyhedra with bendings and Riemann surfaces. Uspekhi Matemat. Nauk 50, 821–823 (1995)

    MATH  MathSciNet  Google Scholar 

  19. Maxwell, J.C.: On the calculation of equilibrium and stiffness of frames. Phil. Mag. 27, 294–299 (1864)

    Google Scholar 

  20. Robertz, D., Gerdt, V.: Comparison of software systems (2004), http://home.bway.net/lewis/

  21. Sabitov, I.Kh.: A proof of the “bellows” conjecture for polyhedra of low topological genus. Dokl. Acad. Nauk 358(6), 743–746 (1998)

    MATH  MathSciNet  Google Scholar 

  22. Stachel, H.: Higher order flexibility of octahedra. Period. Math. Hung. 39, 225–240 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sommese, A.J., Wampler II, C.W.: The Numerical Solution of Systems of Polynomial arising in Engineering and Science. World Scientific, New York (2005)

    Google Scholar 

  24. Stephanos, Cyparissos, problem 376, L’ Intermédiaire des Mathématiciens 2, 243–244 (1895)

    Google Scholar 

  25. Thorpe, M., Lei, M., Rader, A.J., Jacobs, D.J., Kuhn, L.: Protein flexibility and dynamics using constraint theory. Journal of Molecular Graphics and Modelling 19, 60–69 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Botana Tomas Recio

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lewis, R.H., Coutsias, E.A. (2007). Algorithmic Search for Flexibility Using Resultants of Polynomial Systems. In: Botana, F., Recio, T. (eds) Automated Deduction in Geometry. ADG 2006. Lecture Notes in Computer Science(), vol 4869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77356-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77356-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77355-9

  • Online ISBN: 978-3-540-77356-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics