Skip to main content

Functions of Human Cytomegalovirus Tegument Proteins Prior to Immediate Early Gene Expression

  • Chapter
Human Cytomegalovirus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 325))

Proteins within the tegument layer of herpesviruses such as human cytomegalovirus (HCMV) are released into the cell upon entry when the viral envelope fuses with the cell membrane. These proteins are fully formed and active, and they mediate key events at the very start of the lytic infectious cycle, including the delivery of the viral genome to the nucleus and the initiation of viral gene expression. This review examines what is known about tegument protein function prior to the immediate early (IE) phase of the viral lytic replication cycle and identifies key questions that need to be answered to better understand how these proteins promote HCMV infection so that antiviral treatments that target these important viral regulators can be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamo JE, Schroer J, Shenk T (2004) Human cytomegalovirus TRS1 protein is required for efficient assembly of DNA-containing capsids. J Virol 78:10221–10229

    Article  PubMed  CAS  Google Scholar 

  • Arnon TI, Achdout H, Levi O, Markel G, Saleh N, Katz G, Gazit R, Gonen-Gross T, Hanna J, Nahari E, Porgador A, Honigman A, Plachter B, Mevorach D, Wolf DG, Mandelboim O (2005) Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immunol 6:515–523

    Article  PubMed  CAS  Google Scholar 

  • AuCoin DP, Smith GB, Meiering CD, Mocarski ES (2006) Betaherpesvirus-conserved cytomegalovirus tegument protein ppUL32 (pp150) controls cytoplasmic events during virion maturation. J Virol 80:8199–8210

    Article  PubMed  CAS  Google Scholar 

  • Baldick CJ, Shenk T (1996) Proteins associated with purified human cytomegalovirus particles. J Virol 70:6097–6105

    PubMed  CAS  Google Scholar 

  • Batterson W, Furlong D, Roizman B (1983) Molecular genetics of herpes simplex virus. VIII. Further characterization of a temperature-sensitive mutant defective in the release of viral DNA and in other stages of the viral reproductive cycle. J Virol 45:397–407

    PubMed  CAS  Google Scholar 

  • Baxter MK, Gibson W (2001) Cytomegalovirus basic phosphoprotein (pUL32) binds to capsids in vitro through its amino one-third. J Virol 75:6865–6873

    Article  PubMed  CAS  Google Scholar 

  • Bechtel JT, Shenk T (2002) Human cytomegalovirus UL47 tegument protein functions after entry and before immediate-early gene expression. J Virol 76:1043–1050

    PubMed  CAS  Google Scholar 

  • Bieniasz PD (2004) Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Bresnahan WA, Shenk T (2000) UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc Natl Acad Sci USA 97:14506–14511

    Article  PubMed  CAS  Google Scholar 

  • Cantrell SR, Bresnahan WA (2005) Interaction between the human cytomegalovirus UL82 gene product (pp71) and hDaxx regulates immediate-early gene expression and viral replication. J Virol 79:7792–7802

    Article  PubMed  CAS  Google Scholar 

  • Cantrell SR, Bresnahan WA (2006) Human cytomegalovirus (HCMV) UL82 gene product (pp71) relieves hDaxx-mediated repression of HCMV replication. J Virol 80:6188–6191

    Article  PubMed  CAS  Google Scholar 

  • Chen DH, Jiang H, Lee M, Liu F, Zhou ZH (1999) Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology 260:10–16

    Article  PubMed  CAS  Google Scholar 

  • Chou J, Roizman B (1989) Characterization of DNA sequence-common and sequence-specific proteins binding to cis-acting sites for cleavage of the terminal a sequence of the herpes simplex virus 1 genome. J Virol 63:1059–1068

    PubMed  CAS  Google Scholar 

  • Dohner K, Wolfstein A, Prank U, Echeverri C, Dujardin D, Vallee R, Sodeik B (2002) Function of dynein and dynactin in herpes simplex virus capsid transport. Mol Biol Cell 13:2795–2809

    Article  PubMed  CAS  Google Scholar 

  • Dohner K, Nagel CH, Sodeik B (2005) Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. Trends Microbiol 13:320–327

    Article  PubMed  Google Scholar 

  • Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, Zhu H, Liu F (2003) Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci USA 11:14223–14228

    Article  Google Scholar 

  • Everett RD, Chelbi-Alix MK (2007) PML and PML nuclear bodies: implications in antiviral defense. Biochimie 89:819–830

    Article  PubMed  CAS  Google Scholar 

  • Everett RD, Murray J (2005) ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 79:5078–5089

    Article  PubMed  CAS  Google Scholar 

  • Feng X, Schroer J, Yu D, Shenk T (2006) Human cytomegalovirus pUS24 is a virion protein that functions very early in the replication cycle. J Virol 80:8371–8378

    Article  PubMed  CAS  Google Scholar 

  • Gallina A, Simoncini L, Garbelli S, Percivalle E, Pedrali-Noy G, Lee KS, Erikson RL, Plachter B, Gerna G, Milaneshi G (1999) Polo-like kinase 1 as a target for human cytomegalovirus pp65 lower matrix protein. J Virol 73:1468–1478

    PubMed  CAS  Google Scholar 

  • Gilbert MJ, Riddell SR, Plachter B, Greenberg PD (1996) Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product. Nature 383:720–722

    Article  PubMed  CAS  Google Scholar 

  • Greber UF, Fassati A (2003) Nuclear import of viral DNA genomes. Traffic 4:136–143

    PubMed  CAS  Google Scholar 

  • Greber UF, Way M (2006) A superhighway to virus infection. Cell 124:741–754

    Article  PubMed  CAS  Google Scholar 

  • Grefte JM, van der Gun BT, Schmolke S, van der Giessen M, van Son WJ, Plachter B, Jahn G, The TH (1992) The lower matrix protein pp65 is the principal viral antigen present in peripheral blood leukocytes during an active cytomegalovirus infection. J Gen Virol 73:2923–2932

    Article  PubMed  CAS  Google Scholar 

  • Hakki M, Marshall EE, De Niro KL, Geballe AP (2006) Binding and nuclear relocalization of protein kinase R by human cytomegalovirus TRS1. J Virol 80:11817–11826

    Article  PubMed  CAS  Google Scholar 

  • Hensel GM, Meyer HH, Buchmann I, Pommerehne D, Schmolke S, Plachter B, Radsak K, Kern HF (1996) Intracellular localization and expression of the human cytomegalovirus matrix phosphoprotein pp71 (ppUL82): evidence for its translocation into the nucleus. J Gen Virol 77:3087–3097

    Article  PubMed  CAS  Google Scholar 

  • Hoffman H, Sindre H, Stamminger T (2002) Functional interaction between the pp71 protein of human cytomegalovirus and the PML-interacting protein human Daxx. J Virol 76:5769–5783

    Article  Google Scholar 

  • Irmiere A, Gibson W (1983) Isolation and characterization of a noninfectious virion-like particle released from cells infected with human strains of cytomegalovirus. Virology 130:118–133

    Article  PubMed  CAS  Google Scholar 

  • Ishov AM, Stenberg RM, Maul GG (1997) Human cytomegalovirus immediate early interaction with host nuclear structures: definition of an immediate transcript environment. J Cell Biol 138:5–16

    Article  PubMed  CAS  Google Scholar 

  • Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ET, Strauss JF, Maul GG (1999) PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147:221–234

    Article  PubMed  CAS  Google Scholar 

  • Ishov AM, Vladimirova OV, and Maul GG (2002) Daxx-mediated accumulation of human cytomegalovirus tegument protein pp71 at ND10 facilitates initiation of viral infection at these nuclear domains. J Virol 76:7705–7712

    Article  PubMed  CAS  Google Scholar 

  • Kalejta RF, Shenk T (2003) Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc Natl Acad Sci USA 100:3263–3268

    Article  PubMed  CAS  Google Scholar 

  • Kalejta RF, Bechtel JT, Shenk T (2003) Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. Mol Cell Biol 23:1885–1895

    Article  PubMed  CAS  Google Scholar 

  • Klupp BG, Fuchs W, Granzow H, Nixdorf R, Mettenleiter TC (2002) Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 76:3065–3071

    Article  PubMed  CAS  Google Scholar 

  • Korioth F, Maul GG, Plachter B, Stamminger T, Frey J (1996) The nuclear domain 10 (ND10) is disrupted by the human cytomegalovirus gene product IE1. Exp Cell Res 229:155–158

    Article  PubMed  CAS  Google Scholar 

  • Lischka P, Toth Z, Thomas M, Mueller R, Stamminger T (2006) The UL69 transactivator protein of human cytomegalovirus interacts with DEXD/H-box RNA helicase UAP56 to promote cytoplasmic accumulation of unspliced RNA. Mol Cell Biol 26:1631–1643

    Article  PubMed  CAS  Google Scholar 

  • Littler E, Stuart AD, Chee MS (1992) Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analog ganciclovir. Nature 358:160–162

    Article  PubMed  CAS  Google Scholar 

  • Lorz K, Hofmann H, Berndt A, Tavalai N, Mueller R, Schlotzer-Schrehardt U, Stamminger T (2006) Deletion of open reading frame UL26 from the human cytomegalovirus genome results in reduced viral growth, which involves impaired stability of viral particles. J Virol 80:5423–5434

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Shenk T (1999) Human cytomegalovirus UL69 protein induces cells to accumulate in G1 phase of the cell cycle. J Virol 73:676–683

    PubMed  CAS  Google Scholar 

  • Lunardi C, Bason C, Navone R, Millo E, Damonte G, Corrocher R, Puccetti A (2000) Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat Med 6:1183–1186

    Article  PubMed  CAS  Google Scholar 

  • Luxton GWG, Haverlock S, Coller, KE, Antinone SE, Pincetic A, Smith GA (2005) Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci USA 102:5832–5837

    Article  PubMed  CAS  Google Scholar 

  • Malik R, Gross SP (2004) Molecular motors: strategies to get along. Curr Biol 14:971–982

    Article  Google Scholar 

  • Marshall KR, Rowley KV, Rinaldi A, Nicholson IP, Ishov AM, Maul GG, Preston CM (2002) Activity and intracellular localization of the human cytomegalovirus protein pp71. J Gen Virol 83:1601–1612

    PubMed  CAS  Google Scholar 

  • Maul GG, Guldner HH, Spivack JG (1993) Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICP0). J Gen Virol 74:2679–2690

    Article  PubMed  CAS  Google Scholar 

  • Mocarski ES, Shenk T, Pass RF (2007) Cytomegaloviruses. In: DM Knipe and PM Howley (eds) Fields virology. Lippincott Williams and Wilkins, Philadelphia, pp 2701–2772

    Google Scholar 

  • Munger J, Yu D, Shenk T (2006) UL26-deficient human cytomegalovirus produces virions with hypophosphorylated pp28 tegument protein that is unstable within newly infected cells. J Virol 80:3541–3548

    Article  PubMed  CAS  Google Scholar 

  • Naranatt PP, Krishnan HH, Smith MS, Chandran B (2005) Kaposi’s sarcoma-associated herpesvirus modulates microtubule dynamics via RhoA-GTP-Diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus. J Virol 79:1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Ogawa-Goto K, Tanaka K, Gibson W, Moriishi E, Miura Y, Kurata T, Irie S, Sata T (2003) Microtubule network facilitates nuclear targeting of human cytomegalovirus capsid. J Virol 77:8541–8547

    Article  PubMed  CAS  Google Scholar 

  • Patrone M, Percivalle E, Secchi M, Fiorina L, Pedrali-Noy G, Zoppe M, Baldanti F, Hahn G, Koszinowski UH, Milanesi G, Galina A (2003) The human cytomegalovirus UL45 gene product is a late, virion-associated protein and influences virus growth at low multiplicities of infection. J Gen Virol 84:3359–3370

    Article  PubMed  CAS  Google Scholar 

  • Preston CM, Nicholl MJ (2006) Role of the cellular protein hDaxx in human cytomegalovirus immediate-early gene expression. J Gen Virol 87:1113–1121

    Article  PubMed  CAS  Google Scholar 

  • Prichard MN, Gao N, Jairath S, Mulamba G, Krosky P, Coen DM, Parker BO, Pari GS (1999) A recombinant human cytomegalovirus with a large deletion in UL97 has a severe replication deficiency. J Virol 73:5663–5670

    PubMed  CAS  Google Scholar 

  • Revello MG, Percivalle E, Di Matteo A, Morini F, Gerna G (1992) Nuclear expression of the lower matrix protein of human cytomegalovirus in peripheral blood leukocytes of immunocompromised viraemic patients. J Gen Virol 73:437–442

    Article  PubMed  CAS  Google Scholar 

  • Saffert RT, Kalejta RF (2006) Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate early gene expression. J Virol 80:3863–3871

    Article  PubMed  CAS  Google Scholar 

  • Saffert RT, Kalejta RF (2007) Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro. J Virol 81:9109–9120

    Article  PubMed  CAS  Google Scholar 

  • Salomoni P, Khelifi, AF (2006) Daxx: death or survival protein? Trends Cell Biol 16:97–104

    Article  PubMed  CAS  Google Scholar 

  • Sampaio KL, Cavignac Y, Stierhof YD, Sinzger C (2005) Human cytomegalovirus labeled with green fluorescent protein for live analysis of intracellular particle movements. J Virol 79:2754–2767

    Article  PubMed  CAS  Google Scholar 

  • Schierling K, Stamminger T, Mertens T, Winkler M (2004) Human cytomegalovirus tegument proteins ppUL82 (pp71) and ppUL35 interact and cooperatively activate the major immediate-early enhancer. J Virol 78:9512–9523

    Article  PubMed  CAS  Google Scholar 

  • Schierling K, Buser C, Mertens T, Winkler M (2005) Human cytomegalovirus tegument protein ppUL35 is important for viral replication and particle formation. J Virol 79:3084–3096

    Article  PubMed  CAS  Google Scholar 

  • Schmolke S, Kern HF, Drescher P, Jahn G, Plachter B (1995) The dominant phosphoprotein pp65 (UL83) of human cytomegalovirus is dispensable for growth in cell culture. J Virol 69:5959–5968

    PubMed  CAS  Google Scholar 

  • Silva MC, Yu QC, Enquist L, Shenk T (2003) Human cytomegalovirus UL99-encoded pp28 is required for the cytoplasmic envelopment of tegument-associated capsids. J Virol 77:10594–10605

    Article  PubMed  CAS  Google Scholar 

  • Sinzger C, Kahl M, Laib K, Klingel K, Rieger P, Plachter B, Jahn G (2000) Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus. J Gen Virol 81:3021–3035

    PubMed  CAS  Google Scholar 

  • Skaletskaya A, Bartle LM, Chittenden T, McCormick AL, Mocarski ES, Goldmacher VS (2001) A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspace-8 activation. Proc Natl Acad Sci USA 98:7829–7834

    Article  PubMed  CAS  Google Scholar 

  • Suomalainen M, Nakano MY, Boucke K, Keller S, Greber UF (2001) Adenovirus-activated PKA and p38/MAPK pathways boos microtubule-mediated nuclear targeting of virus. EMBO J 20:1310–1319

    Article  PubMed  CAS  Google Scholar 

  • Sullivan V, Talarico CL, Stanat SC, Davis M, Coen DM, Biron KK (1992) A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells. Nature 358:162–164

    Article  PubMed  CAS  Google Scholar 

  • Tavalai N, Papior P, Rechter S, Leis M, Stamminger T (2006) Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections. J Virol 80:8006–8018

    Article  PubMed  CAS  Google Scholar 

  • Terhune SS, Schroer J, Shenk T (2004) RNAs are packaged into human cytomegalovirus virions in proportion to their intracellular concentration. J Virol 78:10390–10398

    Article  PubMed  CAS  Google Scholar 

  • Terhune S, Torigoi E, Moorman N, Silva M, Qian Z, Shenk T, Yu D (2007) Human cytomegalovirus UL38 protein blocks apoptosis. J Virol 81:3109–3123

    Article  PubMed  CAS  Google Scholar 

  • Trgovcich J, Cebulla C, Zimmerman P, Sedmak DD (2006) Human cytomegalovirus protein pp71 disrupts major histocompatibility complex class I cell surface expression. J Virol 80:951–963

    Article  PubMed  CAS  Google Scholar 

  • Trus BL, Gibson W, Cheng N, Steven AC (1999) Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. J Virol 73:2181–2192

    PubMed  CAS  Google Scholar 

  • Varnum SM, Streblow DN, Monroe ME, Smith P, Auberry KJ, Pasa-Tolic L, Wang D, Camp DG, Rodland K, Wiley S, Britt W, Shenk T, Smith RD, Nelson J (2004) Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J Virol 78:10960–10966

    Article  PubMed  CAS  Google Scholar 

  • Vittone V, Diefenbach E, Triffett D, Douglas MW, Cunningham AL, Diefenbach RJ (2005) Determination of interactions between tegument proteins of herpes simplex virus type 1. J Virol 79:9566–9571

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Loveland AN, Kattenhorn LM, Ploegh HL, Gibson W (2006) High-molecular-weight protein (pUL48) of human cytomegalovirus is a competent deubiquitinating protease: mutant viruses altered in its active-site cysteine or histidine are viable. J Virol 80:6003–6012

    Article  PubMed  CAS  Google Scholar 

  • Welte MA (2004) Bidirectional transport along microtubules. Curr Biol 14:525–537

    Article  Google Scholar 

  • Wiesmeijer K, Molenaar C, Bekeer IM, Tanke HJ, Dirks RW (2002) Mobile foci of SP100 do not contain PML: PML bodies are immobile but PML and SP100 proteins are not. J Struct Biol 140:180–188

    Article  PubMed  CAS  Google Scholar 

  • Wills MR, Carmichael AJ, Mynard K, Jin X, Weeks MP, Plachter B, Sissons JGP (1996) The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol 70:7569–7579

    PubMed  CAS  Google Scholar 

  • Wolfstein A, Nagel CH, Radtke K, Dohner K, Allan VJ, Sodeik B (2006) The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. Traffic 7:227–237

    Article  PubMed  CAS  Google Scholar 

  • Woodhall DL, Groves IJ, Reeves MB, Wilkinson G, Sinclair JH (2006) Human Daxx-mediated repression of human cytomegalovirus gene expression correlates with a repressive chromatin structure around the major immediate early promoter. J Biol Chem 49:37652–37660

    Article  Google Scholar 

  • Wing BA, Lee GCY, Huang E-S (1996) The human cytomegalovirus UL94 open reading frame encodes a conserved herpesvirus capsid/tegument-associated virion protein that is expressed with true late kinetics. J Virol 70:3339–3345

    PubMed  CAS  Google Scholar 

  • Yao ZQ, Gallez-Hawkins G, Lomeli NA, Li X, Molinder KM, Diamond DJ, Zaia JA (2001) Site-directed mutation in a conserved kinase domain of human cytomegalovirus-pp65 with preservation of cytotoxic T lymphocyte targeting. Vaccine 19:1628–1635

    Article  PubMed  CAS  Google Scholar 

  • Yoakum GH (1993) Mapping a putative pyruvoyl decarboxylase active site to human cytomegalovirus open reading frame UL77. Biochem Biophys Res Comm 194:1207–1215

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Silva MC, Shenk T (2003) Functional map of human cytomegalovirus AD169 defined by global mutagenesis analysis. Proc Natl Acad Sci USA 100:12396–12401

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalejta, R.F. (2008). Functions of Human Cytomegalovirus Tegument Proteins Prior to Immediate Early Gene Expression. In: Shenk, T.E., Stinski, M.F. (eds) Human Cytomegalovirus. Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77349-8_6

Download citation

Publish with us

Policies and ethics