Skip to main content

Aspects of Human Cytomegalovirus Latency and Reactivation

  • Chapter
Human Cytomegalovirus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 325))

Primary infection of healthy individuals with human cytomegalovirus (HCMV) is usually asymptomatic and results in the establishment of a lifelong latent infection of the host. Although no overt HCMV disease is observed in healthy carriers, due to effective immune control, severe clinical symptoms associated with HCMV reactivation are observed in immunocompromised transplant patients and HIV sufferers. Work from a number of laboratories has identified the myeloid lineage as one important site for HCMV latency and reactivation and thus has been the subject of extensive study. Attempts to elucidate the mechanisms controlling viral latency have shown that cellular transcription factors and histone proteins influence HCMV gene expression profoundly and that the type of cellular environment virus encounters upon infection may have a critical role in determining a lytic or latent infection and subsequent reactivation from latency. Furthermore, the identification of a number of viral gene products expressed during latent infection suggests a more active role for HCMV during latency. Defining the role of these viral proteins in latently infected cells will be important for our full understanding of HCMV latency and reactivation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams A (1987) Replication of latent Epstein-Barr virus genomes in Raji cells. J Virol 61:1743–1746.

    PubMed  CAS  Google Scholar 

  • Adler SP (1983) Transfusion-associated cytomegalovirus infections. Rev Infect Dis 5:977–993.

    PubMed  CAS  Google Scholar 

  • Bain M, Mendelson M, Sinclair J (2003) Ets-2 repressor factor (ERF) mediates repression of the human cytomegalovirus major immediate-early promoter in undifferentiated non-permissive cells. J Gen Virol 84:41–49.

    Article  PubMed  CAS  Google Scholar 

  • Bego MG, St Jeor S (2006) Human cytomegalovirus infection of cells of hematopoietic origin: HCMV-induced immunosuppression, immune evasion, and latency. Exp Hematol 34:555–570.

    Article  PubMed  CAS  Google Scholar 

  • Bego M, Maciejewski J, Khaiboullina S, Pari G, St Jeor S (2005) Characterization of an antisense transcript spanning the UL81–82 locus of human cytomegalovirus. J Virol 79:11022–11034.

    Article  PubMed  CAS  Google Scholar 

  • Beisser PS, Laurent L, Virelizier JL, Michelson S (2001) Human cytomegalovirus chemokine receptor gene US28 is transcribed in latently infected THP-1 monocytes. J Virol 75:5949–5957.

    Article  PubMed  CAS  Google Scholar 

  • Bevan IS, Daw RA, Day PJ, Ala FA, Walker MR (1991) Polymerase chain reaction for detection of human cytomegalovirus infection in a blood donor population. Br J Haematol 78:94–99.

    Article  PubMed  CAS  Google Scholar 

  • Bolovan-Fritts CA, Mocarski ES, Wiedeman JA (1999) Peripheral blood CD14(+) cells from healthy subjects carry a circular conformation of latent cytomegalovirus genome. Blood 93:394–398.

    PubMed  CAS  Google Scholar 

  • Bresnahan WA, Shenk TE (2000) UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc Natl Acad Sci USA 97:14506–14511.

    Article  PubMed  CAS  Google Scholar 

  • Cheung AK, Abendroth A, Cunningham AL, Slobedman B (2006) Viral gene expression during the establishment of human cytomegalovirus latent infection in myeloid progenitor cells. Blood 108:3691–3699.

    Article  PubMed  CAS  Google Scholar 

  • Cotter MA 2nd, Robertson ES (1999) The latency-associated nuclear antigen tethers the Kaposi’s sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264:254–264.

    Article  PubMed  CAS  Google Scholar 

  • Danesh J, Collins R, Peto R (1997) Chronic infections and coronary heart disease: is there a link? Lancet 350:430–436.

    Article  PubMed  CAS  Google Scholar 

  • Epstein SE, Speir E, Zhou YF, Guetta E, Leon M, Finkel T (1996) The role of infection in restenosis and atherosclerosis: focus on cytomegalovirus. Lancet 348 [Suppl 1]:s13–s17.

    Article  PubMed  CAS  Google Scholar 

  • Everett RD (2006) Interactions between DNA viruses, ND10 and the DNA damage response. Cell Microbiol 8:365–374.

    Article  PubMed  CAS  Google Scholar 

  • Fish KN, Stenglein SG, Ibanez C, Nelson JA (1995) Cytomegalovirus persistence in macrophages and endothelial cells. Scand J Infect Dis Suppl 99:34–40.

    PubMed  CAS  Google Scholar 

  • Fish KN, Soderberg-Naucler C, Mills LK, Stenglein S, Nelson JA (1998) Human cytomegalovirus persistently infects aortic endothelial cells. J Virol 72:5661–5668.

    PubMed  CAS  Google Scholar 

  • Fortunato EA, McElroy AK, Sanchez I, Spector DH (2000) Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends Microbiol 8:111–119.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert GL, Hayes K, Hudson IL, James J (1989) Prevention of transfusion-acquired cytomegalovirus infection in infants by blood filtration to remove leucocytes. Neonatal Cytomegalovirus Infection Study Group. Lancet 1:1228–1231.

    Article  PubMed  CAS  Google Scholar 

  • Goodrum FD, Jordan CT, High K, Shenk T (2002) Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. Proc Natl Acad Sci USA 99:16255–16260.

    Article  PubMed  CAS  Google Scholar 

  • Goodrum F, Jordan CT, Terhune SS, High K, Shenk T (2004) Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations. Blood 104:687–695.

    Article  PubMed  CAS  Google Scholar 

  • Goodrum F, Reeves M, Sinclair J, High K, Shenk T (2007) Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro. Blood 110:937–945.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths PD, Walter S (2005) Cytomegalovirus. Curr Opin Infect Dis 18:241–245.

    Article  PubMed  Google Scholar 

  • Hahn G, Jores R, Mocarski ES (1998) Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci USA 95:3937–3942.

    Article  PubMed  CAS  Google Scholar 

  • Ho M (1990) Epidemiology of cytomegalovirus infections. Rev Infect Dis 12 [Suppl 7]: S701–S710.

    PubMed  Google Scholar 

  • Ioudinkova E, Arcangeletti MC, Rynditch A, De Conto F, Motta F, Covan S, Pinardi F, Razin SV, Chezzi C (2006) Control of human cytomegalovirus gene expression by differential histone modifications during lytic and latent infection of a monocytic cell line. Gene 384:120–128.

    Article  PubMed  CAS  Google Scholar 

  • Jarvis MA, Nelson JA (2007) Human cytomegalovirus tropism for endothelial cells: not all endothelial cells are created equal. J Virol 81:2095–2101.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins C, Abendroth A, Slobedman B (2004) A novel viral transcript with homology to human interleukin-10 is expressed during latent human cytomegalovirus infection. J Virol 78:1440–1447.

    Article  PubMed  CAS  Google Scholar 

  • Johnson DC, Hegde NR (2002) Inhibition of the MHC class II antigen presentation pathway by human cytomegalovirus. Curr Top Microbiol Immunol 269:101–115.

    PubMed  CAS  Google Scholar 

  • Kahl M, Siegel-Axel D, Stenglein S, Jahn G, Sinzger C (2000) Efficient lytic infection of human arterial endothelial cells by human cytomegalovirus strains. J Virol 74:7628–7635.

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Mocarski ES (1995) Cytomegalovirus latency and latency-specific transcription in hematopoietic progenitors. Scand J Infect Dis Suppl 99:63–67.

    PubMed  CAS  Google Scholar 

  • Kondo K, Kaneshima H, Mocarski ES (1994) Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. Proc Natl Acad Sci USA 91:11879–11883.

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Xu J, Mocarski ES (1996) Human cytomegalovirus latent gene expression in granulocyte-macrophage progenitors in culture and in seropositive individuals. Proc Natl Acad Sci USA 93:11137–11142.

    Article  PubMed  CAS  Google Scholar 

  • Kotenko SV, Saccani S, Izotova LS, Mirochnitchenko OV, Pestka S (2000) Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci USA 97:1695–1700.

    Article  PubMed  CAS  Google Scholar 

  • Landini MP, Lazzarotto T, Xu J, Geballe AP, Mocarski ES (2000) Humoral immune response to proteins of human cytomegalovirus latency-associated transcripts. Biol Blood Marrow Transplant 6:100–108.

    Article  PubMed  CAS  Google Scholar 

  • Leight ER, Sugden B (2000) EBNA-1: a protein pivotal to latent infection by Epstein-Barr virus. Rev Med Virol 10:83–100.

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Stinski MF (1992) Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J Virol 66:4434–4444.

    PubMed  CAS  Google Scholar 

  • Liu R, Baillie J, Sissons JG, Sinclair JH (1994) The transcription factor YY1 binds to negative regulatory elements in the human cytomegalovirus major immediate early enhancer/promoter and mediates repression in non-permissive cells. Nucleic Acids Res 22:2453–2459.

    Article  PubMed  CAS  Google Scholar 

  • Lunetta JM, Wiedeman JA (2000) Latency-associated sense transcripts are expressed during in vitro human cytomegalovirus productive infection. Virology 278:467–476.

    Article  PubMed  CAS  Google Scholar 

  • Maciejewski JP, St Jeor SC (1999) Human cytomegalovirus infection of human hematopoietic progenitor cells. Leuk Lymphoma 33:1–13.

    PubMed  CAS  Google Scholar 

  • Maussang D, Verzijl D, van Walsum M, Leurs R, Holl J, Pleskoff O, Michel D, van Dongen GA, Smit MJ (2006) Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA 103:13068–13073.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin-Taylor E, Pande H, Forman SJ, Tanamachi B, Li CR, Zaia JA, Greenberg PD, Riddell SR (1994) Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J Med Virol 43:103–110.

    Article  PubMed  CAS  Google Scholar 

  • Meier JL (2001) Reactivation of the human cytomegalovirus major immediate-early regulatory region and viral replication in embryonal NTera2 cells: role of trichostatin A, retinoic acid, and deletion of the 21-base-pair repeats and modulator. J Virol 75:1581–1593.

    Article  PubMed  CAS  Google Scholar 

  • Meier JL, Stinski MF (1996) Regulation of human cytomegalovirus immediate-early gene expression. Intervirology 39:331–342.

    PubMed  CAS  Google Scholar 

  • Mendelson M, Monard S, Sissons P, Sinclair J (1996) Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol 77:3099–3102.

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D (1989) The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339:27–30.

    Article  PubMed  CAS  Google Scholar 

  • Minton EJ, Tysoe C, Sinclair JH, Sissons JG (1994) Human cytomegalovirus infection of the monocyte/macrophage lineage in bone marrow. J Virol 68:4017–4021.

    PubMed  CAS  Google Scholar 

  • Mocarski ES, Hahn G, White KL, Xu J, Slobedman B, Hertel L, Aguirre SA, Noda S (2006) Myeloid cell recruitment and function in pathogenesis and latency. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister, Wymondon, UK, pp 465–481.

    Google Scholar 

  • Monji T, Petersons J, Saund NK, Vuckovic S, Hart DN, Auditore-Hargreaves K, Risdon G (2002) Competent dendritic cells derived from CD34+ progenitors express CMRF-44 antigen early in the differentiation pathway. Immunol Cell Biol 80:216–225.

    Article  PubMed  CAS  Google Scholar 

  • Murphy JC, Fischle W, Verdin E, Sinclair JH (2002) Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 21:1112–1120.

    Article  PubMed  CAS  Google Scholar 

  • Nevels M, Paulus C, Shenk T (2004) Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation. Proc Natl Acad Sci USA 101:17234–17239.

    Article  PubMed  CAS  Google Scholar 

  • O’Garra A, Trinchieri G (2004) Are dendritic cells afraid of commitment? Nat Immunol 5:1206–1208.

    Article  PubMed  Google Scholar 

  • Olweus J, BitMansour A, Warnke R, Thompson PA, Carballido J, Picker LJ, Lund-Johansen F (1997) Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc Natl Acad Sci USA 94:12551–12556.

    Article  PubMed  CAS  Google Scholar 

  • Peggs KS, Mackinnon S (2004) Cytomegalovirus: the role of CMV post-haematopoietic stem cell transplantation. Int J Biochem Cell Biol 36:695–701.

    Article  PubMed  CAS  Google Scholar 

  • Plachter B, Sinzger C, Jahn G (1996) Cell types involved in replication and distribution of human cytomegalovirus. Adv Virus Res 46:195–261.

    Article  PubMed  CAS  Google Scholar 

  • Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers GL (2001) Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol 115:186–194.

    Article  PubMed  CAS  Google Scholar 

  • Reeves MB, Coleman H, Chadderton J, Goddard M, Sissons JG, Sinclair JH (2004) Vascular endothelial and smooth muscle cells are unlikely to be major sites of latency of human cytomegalovirus in vivo. J Gen Virol 85:3337–3341.

    Article  PubMed  CAS  Google Scholar 

  • Reeves MB, Lehner PJ, Sissons JG, Sinclair JH (2005a) An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J Gen Virol 86:2949–2954.

    Article  PubMed  CAS  Google Scholar 

  • Reeves MB, MacAry PA, Lehner PJ, Sissons JG, Sinclair JH (2005b) Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci USA 102:4140–4145.

    Article  PubMed  CAS  Google Scholar 

  • Reeves M, Murphy J, Greaves R, Fairley J, Brehm A, Sinclair J (2006) Autorepression of the human cytomegalovirus major immediate-early promoter/enhancer at late times of infection is mediated by the recruitment of chromatin remodeling enzymes by IE86. J Virol 80:9998–10009.

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt B, Winkler M, Schaarschmidt P, Pretsch R, Zhou S, Vaida B, Schmid-Kotsas A, Michel D, Walther P, Bachem M, Mertens T (2006) Human cytomegalovirus-induced reduction of extracellular matrix proteins in vascular smooth muscle cell cultures: a pathomechanism in vasculopathies? J Gen Virol 87:2849–2858.

    Article  PubMed  CAS  Google Scholar 

  • Riddell SR, Rabin M, Geballe AP, Britt WJ, Greenberg PD (1991) Class I MHC-restricted cytotoxic T lymphocyte recognition of cells infected with human cytomegalovirus does not require endogenous viral gene expression. J Immunol 146:2795–2804.

    PubMed  CAS  Google Scholar 

  • Rubin RH (1990) Impact of cytomegalovirus infection on organ transplant recipients. Rev Infect Dis 12 [Suppl 7]:S754–S766.

    PubMed  Google Scholar 

  • Schierling K, Stamminger T, Mertens T, Winkler M (2004) Human cytomegalovirus tegument proteins ppUL82 (pp71) and ppUL35 interact and cooperatively activate the major immediate-early enhancer. J Virol 78:9512–9523.

    Article  PubMed  CAS  Google Scholar 

  • Simmen KA, Singh J, Luukkonen BG, Lopper M, Bittner A, Miller NE, Jackson MR, Compton T, Fruh K (2001) Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc Natl Acad Sci USA 98:7140–7145.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair J, Sissons P (1996) Latent and persistent infections of monocytes and macrophages. Intervirology 39:293–301.

    PubMed  CAS  Google Scholar 

  • Sinclair J, Sissons P (2006) Latency and reactivation of human cytomegalovirus. J Gen Virol 87:1763–1779.

    Article  PubMed  CAS  Google Scholar 

  • Sindre H, Tjoonnfjord GE, Rollag H, Ranneberg-Nilsen T, Veiby OP, Beck S, Degre M, Hestdal K (1996) Human cytomegalovirus suppression of and latency in early hematopoietic progenitor cells. Blood 88:4526–4533.

    PubMed  CAS  Google Scholar 

  • Sinzger C, Grefte A, Plachter B, Gouw AS, The TH, Jahn G (1995) Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76:741–750.

    Article  PubMed  CAS  Google Scholar 

  • Sissons JG, Carmichael AJ (2002) Clinical aspects and management of cytomegalovirus infection. J Infect 44:78–83.

    Article  PubMed  CAS  Google Scholar 

  • Sissons JG, Bain M, Wills MR (2002) Latency and reactivation of human cytomegalovirus. J Infect 44:73–77.

    Article  PubMed  CAS  Google Scholar 

  • Slobedman B, Mocarski ES (1999) Quantitative analysis of latent human cytomegalovirus. J Virol 73:4806–4812.

    PubMed  CAS  Google Scholar 

  • Slobedman B, Mocarski ES, Arvin AM, Mellins ED, Abendroth A (2002) Latent cytomegalovirus down-regulates major histocompatibility complex class II expression on myeloid progenitors. Blood 100:2867–2873.

    Article  PubMed  CAS  Google Scholar 

  • Slobedman B, Stern JL, Cunningham AL, Abendroth A, Abate DA, Mocarski ES (2004) Impact of human cytomegalovirus latent infection on myeloid progenitor cell gene expression. J Virol 78:4054–4062.

    Article  PubMed  CAS  Google Scholar 

  • Soderberg-Naucler C, Fish KN, Nelson JA (1997) Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91:119–126.

    Article  PubMed  CAS  Google Scholar 

  • Soderberg-Naucler C, Streblow DN, Fish KN, Allan-Yorke J, Smith PP, Nelson JA (2001) Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J Virol 75:7543–7554.

    Article  PubMed  CAS  Google Scholar 

  • Spencer JV, Lockridge KM, Barry PA, Lin G, Tsang M, Penfold ME, Schall TJ (2002) Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol 76:1285–1292.

    PubMed  CAS  Google Scholar 

  • Stanier P, Kitchen AD, Taylor DL, Tyms AS (1992) Detection of human cytomegalovirus in peripheral mononuclear cells and urine samples using PCR. Mol Cell Probes 6:51–58.

    Article  PubMed  CAS  Google Scholar 

  • Streblow DN, Nelson JA (2003) Models of HCMV latency and reactivation. Trends Microbiol 11:293–295.

    Article  PubMed  CAS  Google Scholar 

  • Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685.

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH (1991) Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol 72:2059–2064.

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Wiedeman J, Hayhurst GP, Sissons JG, Sinclair JH (1993) Polymorphonuclear cells are not sites of persistence of human cytomegalovirus in healthy individuals. J Gen Virol 74:265–268.

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Wiedeman J, Sissons P, Sinclair J (1994) Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J Virol 68:1597–1604.

    PubMed  CAS  Google Scholar 

  • Thomas MJ, Seto E (1999) Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene 236:197–208.

    Article  PubMed  CAS  Google Scholar 

  • Tolpin MD, Stewart JA, Warren D, Mojica BA, Collins MA, Doveikis SA, Cabradilla C Jr, Schauf V, Raju TN, Nelson K (1985) Transfusion transmission of cytomegalovirus confirmed by restriction endonuclease analysis. J Pediatr 107:953–956.

    Article  PubMed  CAS  Google Scholar 

  • White KL, Slobedman B, Mocarski ES (2000) Human cytomegalovirus latency-associated protein pORF94 is dispensable for productive and latent infection. J Virol 74:9333–9337.

    Article  PubMed  CAS  Google Scholar 

  • Wills MR, Carmichael AJ, Mynard K, Jin X, Weekes MP, Plachter B, Sissons JG (1996) The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol 70:7569–7579.

    PubMed  CAS  Google Scholar 

  • Wright E, Bain M, Teague L, Murphy J, Sinclair J (2005) Ets-2 repressor factor recruits histone deacetylase to silence human cytomegalovirus immediate-early gene expression in non-permissive cells. J Gen Virol 86:535–544.

    Article  PubMed  CAS  Google Scholar 

  • Yates J, Warren N, Reisman D, Sugden B (1984) A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA 81:3806–3810.

    Article  PubMed  CAS  Google Scholar 

  • Yeager AS, Grumet FC, Hafleigh EB, Arvin AM, Bradley JS, Prober CG (1981) Prevention of transfusion-acquired cytomegalovirus infections in newborn infants. J Pediatr 98:281–287.

    Article  PubMed  CAS  Google Scholar 

  • Young LS, Dawson CW, Eliopoulos AG (2000) The expression and function of Epstein-Barr virus encoded latent genes. Mol Pathol 53:238–247.

    Article  PubMed  CAS  Google Scholar 

  • Zaia JA (1990) Epidemiology and pathogenesis of cytomegalovirus disease. Semin Hematol 27:5–10; discussion 28–19.

    PubMed  CAS  Google Scholar 

  • Zweidler-Mckay PA, Grimes HL, Flubacher MM, Tsichlis PN (1996) Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol Cell Biol 16:4024–4034.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reeves, M., Sinclair, J. (2008). Aspects of Human Cytomegalovirus Latency and Reactivation. In: Shenk, T.E., Stinski, M.F. (eds) Human Cytomegalovirus. Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77349-8_17

Download citation

Publish with us

Policies and ethics