Skip to main content

A Novel Fuzzy Approach to Evaluate the Quality of Examination Timetabling

  • Conference paper
Practice and Theory of Automated Timetabling VI (PATAT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3867))

Abstract

In this paper we introduce a new fuzzy evaluation function for examination timetabling. We describe how we employed fuzzy reasoning to evaluate the quality of a constructed timetable by considering two criteria: the average penalty per student and the highest penalty imposed on any of the students. A fuzzy system was created based on a series of easy to understand rules to combine the two criteria. A significant problem encountered was how to determine the lower and upper bounds of the decision criteria for any given problem instance, in order to allow the fuzzy system to be fixed and, hence, applicable to new problems without alteration. In this work, two different methods for determining boundary settings are proposed. Experimental results are presented and the implications analysed. These results demonstrate that fuzzy reasoning can be successfully applied to evaluate the quality of timetable solutions in which multiple decision criteria are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdennadher, S., Marte, M.: University course timetabling using constraint handling rules. Journal of Applied Artificial Intelligence 14, 311–326 (2000)

    Article  Google Scholar 

  2. Asmuni, H., Burke, E.K., Garibaldi, J.M.: A comparison of fuzzy and non-fuzzy ordering heuristics for examination timetabling. In: Lotfi, A. (ed.) Proceedings of 5th International Conference on Recent Advances in Soft Computing, pp. 288–293 (2004)

    Google Scholar 

  3. Asmuni, H., Burke, E.K., Garibaldi, J.M., McCollum, B.: Fuzzy multiple heuristic orderings for examination timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 334–353. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Boizumault, P., Delon, Y., Peridy, L.: Constraint logic programming for examination timetabling. The Journal of Logic Programming 26, 217–233 (1996)

    Article  MATH  Google Scholar 

  5. Burke, E.K., Bykov, Y., Newall, J., Petrovic, S.: A time-predefined local search approach to exam timetabling problems. IIE Transactions 36, 509–528 (2004)

    Article  Google Scholar 

  6. Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F.: Examination timetabling in British universities – a survey. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 76–90. Springer, Heidelberg (1996)

    Google Scholar 

  7. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and rostering. Journal of Heuristics 9, 451–470 (2003)

    Article  Google Scholar 

  8. Burke, E.K., Newall, J.P., Weare, R.F.: A memetic algorithm for university exam timetabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)

    Google Scholar 

  9. Burke, E.K., Newall, J.P.: A multistage evolutionary algorithm for the timetable problem. IEEE Transactions on Evolutionary Computation 3, 63–74 (1999)

    Article  Google Scholar 

  10. Burke, E.K., Petrovic, S.: Recent research trends in automated timetabling. European Journal of Operational Research 140, 266–280 (2002)

    Article  MATH  Google Scholar 

  11. Burke, E.K., Petrovic, S., Qu, R.: Case based heuristic selection for timetabling problems. Journal of Scheduling 9, 115–132 (2006)

    Article  MATH  Google Scholar 

  12. Carter, M.W., Laporte, G.: Recent developments in practical exam timetabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 3–21. Springer, Heidelberg (1996)

    Google Scholar 

  13. Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling: algorithmic strategies and applications. Journal of the Operational Research Society 47, 373–383 (1996)

    Article  Google Scholar 

  14. Casey, S., Thompson, J.: GRASPing the examination scheduling problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 232–244. Springer, Heidelberg (2003)

    Google Scholar 

  15. Cox, E., O’Hagen, M.: The Fuzzy Systems Handbook: A Practitioner’s Guide to Building, Using and Maintaining Fuzzy Systems. AP Professional, Cambridge, MA (1998)

    Google Scholar 

  16. Deris, S., Omatu, S., Ohta, H., Saad, P.: Incorporating constraint propagation in a genetic algorithm for university timetabling planning. Engineering Applications of Artificial Intelligence 12, 241–253 (1999)

    Article  Google Scholar 

  17. Di Gaspero, L., Schaerf, A.: Tabu search techniques for examination timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Guéret, C., Jussien, N., Boizumault, P., Prins, C.: Building university timetables using constraint logic programming. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 130–145. Springer, Heidelberg (1996)

    Google Scholar 

  19. Kendall, G., Mohd Hussin, N.: A tabu search hyper-heuristic approach to the examination timetabling problem at the MARA University of Technology. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 270–293. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7, 1–13 (1975)

    Article  MATH  Google Scholar 

  21. Pappis, C., Siettos, C.: Fuzzy reasoning. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ch. 15, pp. 437–474. Springer, Berlin (2005)

    Google Scholar 

  22. Petrovic, S., Burke, E.K.: University timetabling. In: Leung, J. (ed.) The Handbook of Scheduling: Algorithms, Models and Performance Analysis, ch. 45, CRC Press, Boca Raton, FL (2004)

    Google Scholar 

  23. Petrovic, S., Patel, V., Yang, Y.: University timetabling with fuzzy constraints. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 313–333. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Qu, R., Burke, E.K., McCullom, B., Merlot, L.T.G., Lee, S.Y.: A survey of search methodologies and automated approaches for examination timetabling. Computer Science Technical Report NOTTCS-TR-2006-4, School of Computer Science and Information Technology, University of Nottingham (2006)

    Google Scholar 

  25. R Development Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2005), ISBN 3-900051-07-0

    Google Scholar 

  26. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13, 87–127 (1999)

    Article  Google Scholar 

  27. Thompson, J.M., Dowsland, K.A.: A robust simulated annealing based examination timetabling system. Computers and Operations Research 25, 637–648 (1998)

    Article  MATH  Google Scholar 

  28. Ueda, H., Ouchi, D., Takahashi, K., Miyahara, T.: Comparisons of genetic algorithms for timetabling problems. Systems and Computers in Japan 35, 1–12 (2004) [Translated from Denshi Joho Tsushin Gakkai Ronbunshi, J86-D-I, 691–701 (2003)]

    Google Scholar 

  29. White, G.M., Xie, B.S., Zonjic, S.: Using tabu search with longer-term memory and relaxation to create examination timetables. European Journal of Operational Research 153, 80–91 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yang, Y., Petrovic, S.: A novel similarity measure for heuristic selection in examination timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 247–269. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications, 3rd edn. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edmund K. Burke Hana Rudová

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asmuni, H., Burke, E.K., Garibaldi, J.M., McCollum, B. (2007). A Novel Fuzzy Approach to Evaluate the Quality of Examination Timetabling. In: Burke, E.K., Rudová, H. (eds) Practice and Theory of Automated Timetabling VI. PATAT 2006. Lecture Notes in Computer Science, vol 3867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77345-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77345-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77344-3

  • Online ISBN: 978-3-540-77345-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics