Advertisement

The Selective Attention for Identification Model (SAIM): Simulating Visual Search in Natural Colour Images

  • Dietmar Heinke
  • Andreas Backhaus
  • Yarou Sun
  • Glyn W. Humphreys
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4840)

Abstract

We recently presented a computational model of object recognition and attention: the Selective Attention for Identification model (SAIM) [1,2,3,4,5,6,7]. SAIM was developed to model normal attention and attentional disorders by implementing translation-invariant object recognition in multiple object scenes. SAIM can simulate a wide range of experimental evidence on normal and disordered attention. In its earlier form, SAIM could only process black and white images. The present paper tackles this important shortcoming by extending SAIM with a biologically plausible feature extraction, using Gabor filters and coding colour information in HSV-colour space. With this extension SAIM proved able to select and recognize objects in natural multiple-object colour scenes. Moreover, this new version still mimicked human data on visual search tasks. These results stem from the competitive parallel interactions that characterize processing in SAIM.

Keywords

Feature Extraction Visual Search Input Image Object Recognition Natural Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heinke, D., Humphreys, G.W.: SAIM: A Model of Visual Attention and Neglect. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 913–918. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Heinke, D., Humphreys, G.W., diVirgilo, G.: Modeling visual search experiments: Selective Attention for Identification Model (SAIM). In: Bower, J.M. (ed.) Neurocomputing of Computational Neuroscience Meeting 2001, vol. 44, pp. 817–822 (2002)Google Scholar
  3. 3.
    Heinke, D., Humphreys, G.W.: Attention, spatial representation and visual neglect: Simulating emergent attention and spatial memory in the Selective Attention for Identification Model (SAIM). Psychological Review 110(1), 29–87 (2003)CrossRefGoogle Scholar
  4. 4.
    Heinke, D., Humphreys, G.W., Tweed, C.L.: Top-down guidance of visual search: A computational account. Visual Cognition 14(4/5/6/7/8), 985–1005 (2006)CrossRefGoogle Scholar
  5. 5.
    Heinke, D., Humphreys, G.W.: Selective attention for identification model: Simulating visual neglect. Computer vision and image understanding 100(1-2), 172–197 (2005)CrossRefGoogle Scholar
  6. 6.
    Heinke, D., Sun, Y.R., Humphreys, G.W.: Modeling grouping through interactions between top-down and bottom-up processes: The grouping and selective attention for identification model (G-SAIM). In: Paletta, L., Tsotsos, J.K., Rome, E., Humphreys, G.W. (eds.) WAPCV 2004. LNCS, vol. 3368, pp. 148–158. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Backhaus, A., Heinke, D., Humphreys, G.W.: Contextual Learning in the Selective Attention for Identification model (CL-SAIM): Modeling contextual cueing in visual search tasks. In: WAPCV. Proceedings of the 3rd international workshop on attention and performance in computer vision (2005)Google Scholar
  8. 8.
    Amari, S.I.: Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields. Biological Cybernetics 27, 77–87 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Heinke, D., Humphreys, G.W.: Computational Models of Visual Selective Attention: A Review. In: Houghton, G. (ed.) Connectionist Models in Psychology, pp. 273–312. Psychology Press, San Diego, CA (2005)Google Scholar
  10. 10.
    Duncan, J.: The locus of interference in the perception of simultaneous stimuli. Psychological Review 87, 272–300 (1980)CrossRefGoogle Scholar
  11. 11.
    Kumada, T., Humphreys, G.W.: Lexical recovery on extinction: Interactions between visual form and stored knowledge modulate visual selection. Cognitive Neuropsychology 18(5), 465–478 (2001)CrossRefGoogle Scholar
  12. 12.
    Navon, D.: Forest before trees: The precedence of global features in visual perception. Cognitive Psychology 9 (1977)Google Scholar
  13. 13.
    Egly, R., Driver, J., Rafal, R.D.: Shifting visual attention between objects and locations: Evidence from normal and parietal subjects. Journal of Experimental Psychology: Human Perception and Performance 123, 161–177 (1994)CrossRefGoogle Scholar
  14. 14.
    Posner, M.I., Snyder, C.R.R., Davidson, B.J.: Attention and the Detection of Signals. Journal of Experimental Psychology: General 109(2), 160–174 (1980)CrossRefGoogle Scholar
  15. 15.
    Posner, M.I., Cohen, Y.: Components of Visual Orienting. Attention and Performance , 531–556 (1984)Google Scholar
  16. 16.
    Humphreys, G.W., Heinke, D.: Spatial representation and selection in the brain: Neuropsychological and computational constraints. Visual Cognition 5(1/2), 9–47 (1998)Google Scholar
  17. 17.
    Humphreys, G.W., Riddoch, M.J.: Separate Coding of Space Within and Between Perceptual Objects: Evidence from Unilateral Visual Neglect. Cognitive Neuropsychology 12(3), 283–311 (1995)CrossRefGoogle Scholar
  18. 18.
    Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  19. 19.
    Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vison Research 40, 1489–1506 (2000)CrossRefGoogle Scholar
  20. 20.
    Koch, C., Itti, L.: Computational Modelling of Visual Attention. Nature Reviews: Neuroscience 2, 194–203 (2001)CrossRefGoogle Scholar
  21. 21.
    Wolfe, J.M.: Visual Search. In: Pashler, H. (ed.) Attention, pp. 13–74. Psychology Press, San Diego, CA (1998)Google Scholar
  22. 22.
    Hopfield, J.J., Tank, D.W.: ”Neural” Computation of Decisions in Optimazation Problems. Biological Cybernetics 52, 141–152 (1985)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Mjolsness, E., Garrett, C.: Algebraic Transformations of Objective Functions. Neural Networks 3, 651–669 (1990)CrossRefGoogle Scholar
  24. 24.
    Gonzalez, R., Woods, R.E.: Digital Image Processing. Prentice-Hall Press, Upper Saddle River, New Jersey (2002)Google Scholar
  25. 25.
    Heinke, D., Gross, H.-M.: A Simple Selforganizing Neural Network Archiecture for Selective Visual Attention. In: ICANN 1993. Proc. of the International Conference on Artificial Neural Network, Amsterdam, The Netherlands, pp. 63–66. Springer, Heidelberg (1993)Google Scholar
  26. 26.
    Walther, D., Itti, L., Riesenhuber, M., Poggio, T., Koch, C.: Attentional Selection for Object Recognition – a Gentle Way. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 472–479. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Dietmar Heinke
    • 1
  • Andreas Backhaus
    • 1
  • Yarou Sun
    • 1
  • Glyn W. Humphreys
    • 1
  1. 1.Behavioural and Brain Sciences Centre, University of Birmingham, Birmingham B15 2TTUnited Kingdom

Personalised recommendations