Autonomous Attentive Exploration in Search and Rescue Scenarios

  • Andrea Carbone
  • Daniele Ciacelli
  • Alberto Finzi
  • Fiora Pirri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4840)


In task-oriented exploration a robot has to direct its sight and delving towards the most promising regions of the environment, according to the task, in order to optimize its search. If the goal is dynamically set on the basis of what it is perceived, attention plays a crucial role, as it allows to combine fast glancing with accurate analysis, enabling the robot to quickly jump to conclusion by selecting the interesting spots in the environment requiring a further analysis. We present a new approach to attentive exploration designed for an autonomous rover working in rescue scenarios. The visual-attention process combined with the simultaneous localization and mapping one guides the robot search through an incremental generation of a view-point saliency map obtained according to transportation processes. Interesting features emerging from pre-attentive pop-outs are projected on the current metric map and, according the preference engendered, diffuse streams of particles warming up those map areas they pass through, in so generating hot regions that result in optimal vantage points for the robot to observe the salient spots glanced at while searching. We show the effectiveness of the approach by providing experimental results and comparisons.


Mobile Robot Visual Attention Salient Region Incremental Generation Attentive Exploration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackerman, C., Itti, L.: Robot steering with spectral image information. IEEE Transactions on Robotics 21(2), 247–251 (2005)CrossRefGoogle Scholar
  2. 2.
    Ballard, D.H., Wixson, L.E.: Object recognition using steerable filters at multiple scales. In: Proceedings of IEEE Workshop on Qualitative Vision, pp. 2–10. IEEE Computer Society Press, Los Alamitos (1993)CrossRefGoogle Scholar
  3. 3.
    Belardinelli, A., Pirri, F.: A biologically plausible robot attention model, based on space and time. Cognitive Processing , 11–14 (2006)Google Scholar
  4. 4.
    Belardinelli, A., Pirri, F., Carbone, A.: Robot task-driven attention. In: PCAR 2006. Proc. International Symposium on Practical Cognitive Agents and Robots, pp. 45–57 (2006)Google Scholar
  5. 5.
    Belardinelli, A., Pirri, F., Carbone, A.: Bottom-up gaze shifts and fixations learning, by imitation. IEEE Transactions on Systems, Man, and Cybernetics, Part B , 256–271 (2007)Google Scholar
  6. 6.
    Burkhard, H-D., Duhaut, D., Fujita, M., Lima, P., Murphy, R., Rojas, R.: The road to robocup 2050: Past progress brings us towards research road map for further competitions and developments. IEEE Robotics and Automation magazine, pp. 31–38 (June 2002)Google Scholar
  7. 7.
    Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  8. 8.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. CVPR (2), 264–271 (2003)Google Scholar
  9. 9.
    Fergus, R., Perona, P., Zisserman, A.: A sparse object category model for efficient learning and exhaustive recognition. CVPR (1), 380–387 (2005)Google Scholar
  10. 10.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)CrossRefGoogle Scholar
  11. 11.
    Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. LNCS (LNAI), vol. 3899. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Frintrop, S., Jensfelt, P., Christensen, H.I.: Attentional landmark selection for visual slam. In: Proceedings of IROS-2006, Beijing, China (2006)Google Scholar
  13. 13.
    Frintrop, S., Nüchter, A., Surmann, H., Hertzberg, J.: Saliency-based object recognition in 3D data. In: Proceedings of IROS-2004, pp. 2167–2172 (2004)Google Scholar
  14. 14.
    Goncalves, L., Distante, C., Oliveira, A., Wheeler, D., Grupen, R.: Neural mechanisms for learning of attention control and pattern categorization as basis for robot cognition. In: Proc (IROS 2000), pp. 1088–1093 (2000)Google Scholar
  15. 15.
    Hähnel, D., Fox, D., Burgard, W., Thrun, S.: A highly efficient FastSLAM algorithm for generating cyclic maps of large-scale environments from raw laser range measurements. In: Proc. of (IROS-2003) (2003)Google Scholar
  16. 16.
    Hügli, H., Jost, T., Ouerhani, N.: Model performance for visual attention in real 3d color scenes. In: IWINAC-2005, pp. 469–478 (2005)Google Scholar
  17. 17.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  18. 18.
    Jacob, M., Unser, M.: Design of steerable filters for feature detection using Canny-like criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8), 1007–1019 (2004)CrossRefGoogle Scholar
  19. 19.
    Jeannerod, M.: The neural and behavioural organization of goal directed movements. Oxford University Press, Oxford (1988)Google Scholar
  20. 20.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Rob. Res. 5(1), 90–98 (1986)CrossRefGoogle Scholar
  21. 21.
    Manduchi, R., Perona, P.: Pyramidal implementation of deformable kernels. In: ICIP, pp. 378–381 (1995)Google Scholar
  22. 22.
    Maxwell, B.A., Smart, W.D., Jacoff, A., Casper, J., Weiss, B., Scholtz, J., Yanco, H.A., Micire, M., Stroupe, A.W., Stormont, D.P., Lauwers, T.: 2003 aaai robot competition and exhibition. AI Magazine 25(2), 68–80 (2004)Google Scholar
  23. 23.
    Minato, T., Asada, M.: Image feature generation by visio-motor map learning towards selective attention. In: Proc. of IROS 2001, pp. 1422–1427 (2001)Google Scholar
  24. 24.
    Mitsunaga, N., Asada, M.: Observation strategy for decision making based on information criterion. In: Proc. of IROS 2000, pp. 1038–1043 (2001)Google Scholar
  25. 25.
    Mitsunaga, N., Asada, M.: Visual attention control for a legged mobile robot based on information criterion. In: Proc. of IROS 2002, pp. 244–249 (2002)Google Scholar
  26. 26.
    Moorehead, S., Simmons, R., Whittaker, W.R.L.: Autonomous exploration using multiple sources of information. In: IEEE International Conference on Robotics and Automation, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  27. 27.
    Ouerhani, N.: A visual attention-based approach for automatic landmark selection and recognition. In: WAPCV 2004, pp. 183–195 (2004)Google Scholar
  28. 28.
    Pessoa, L., Exel, S.: Attentional strategies for object recognition. In: IWANN 1999, pp. 850–859. Springer-Verlag, Heidelberg (1999)Google Scholar
  29. 29.
    Pichon, E., Itti, L.: Real-time high-performance attention focusing for outdoors mobile beobots. In: Proceedings of AAAI Spring Symposium (AAAI-TR-SS-02-04), p. 63 (2002)Google Scholar
  30. 30.
    Scholtz, J.J., Young, J., Drury, J.L., Yanco, H.A.: Evaluation of human-robot interaction awareness in search and rescue. In: ICRA-2004 (April 2004)Google Scholar
  31. 31.
    Sim, R., Dudek, G.: Self-organizing visual maps. In: Proceedings of AAAI-2004, pp. 470–475 (2004)Google Scholar
  32. 32.
    Sim, R., Little, J.J.: Autonomous vision-based exploration and mapping using hybrid maps and Rao-Blackwellised particle filters. In: Proceedings of IROS-2006, Beijing (2006)Google Scholar
  33. 33.
    Simoncelli, E.P., Farid, H.: Steerable wedge filters for local orientation analysis. IEEE Transactions on Image Processing 5(9), 1377–1382 (1996)CrossRefGoogle Scholar
  34. 34.
    Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multiscale transforms. IEEE Transactions on Information Theory 38(2), 587–607 (1992)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Soyer, C., Bozma, H.I., Istefanopulos, Y.: Apes: Attentively perceiving robot. Auton. Robots 20(1), 61–80 (2006)CrossRefGoogle Scholar
  36. 36.
    Stachniss, C., Burgard, W.: Mapping and exploration with mobile robots using coverage maps. In: Proc (IROS)-2003 (2003)Google Scholar
  37. 37.
    Tadokoro, S.: Robocuprescue robot league. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 482–484. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  38. 38.
    Tadokoro, S., Kitano, H., Takahashi, T., Noda, I., Matsubara, H., Shinjoh, A., Koto, T., Takeuchi, I., Takahashi, H., Matsuno, F., Hatayama, M., Nobe, J., Shimada, S.: The robocup-rescue project: A robotic approach to the disaster mitigation problem. In: ICRA-2000, pp. 4089–4095 (2000)Google Scholar
  39. 39.
    Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann, San Francisco (2002)Google Scholar
  40. 40.
    Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognit. Psychol. 12(1), 97–136 (1980)CrossRefGoogle Scholar
  41. 41.
    Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K., Lai, Y., Davis, N., Nuflo, F.: Modeling visual attention via selective tuning. Artificial Intelligence 78(1-2), 507–545 (1995)CrossRefGoogle Scholar
  42. 42.
    Winters, N., Santos-Victor, J.: Visual attention-based robot navigation using information sampling. In: Proceedings of IROS-2001, pp. 1670–1675 (2001)Google Scholar
  43. 43.
    Yamauchi, B., Schultz, A., Adams, W.: Integrating exploration and localization for mobile robots. Autonomous Robots 3(6), 293–308 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andrea Carbone
    • 1
  • Daniele Ciacelli
    • 1
  • Alberto Finzi
    • 1
  • Fiora Pirri
    • 1
  1. 1.ALCOR Lab, DIS, Sapienza, Università di Roma, Via Ariosto 25, I-00195 RomeItaly

Personalised recommendations