Advertisement

Modeling the Dynamics of Feature Binding During Object-Selective Attention

  • Albert L. Rothenstein
  • John K. Tsotsos
Conference paper
  • 1.2k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4840)

Abstract

We present a biologically plausible computational model for solving the visual feature binding problem. The binding problem appears to be due to the distributed nature of visual processing in the primate brain, and the gradual loss of spatial information along the processing hierarchy. The model relies on the reentrant connections so ubiquitous in the primate brain to recover spatial information, and thus allows features represented in different parts of the brain to be integrated in a unitary conscious percept. We demonstrate the ability of the Selective Tuning model of visual attention [1] to recover spatial information, and based on this we propose a general solution to the feature binding problem. The solution is used to simulate the results of a recent neurophysiology study on the binding of motion and color. The example demonstrates how the method is able to handle the difficult case of transparency.

Keywords

Spatial Information Visual Attention Attentional Blink Feature Binding Attentional Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K., Lai, Y.H., Davis, N., Nuflo, F.: Modeling visual-attention via selective tuning. Artif. Intell. 78(1-2), 507–545 (1995)CrossRefGoogle Scholar
  2. 2.
    Goodale, M.A., Milner, D.A.: Separate visual pathways for perception and action. Trends in Neuroscience 15(1), 20–25 (1992)CrossRefGoogle Scholar
  3. 3.
    Roskies, A.L.: The binding problem. Neuron 24(1), 7–9 (1999)CrossRefGoogle Scholar
  4. 4.
    Rosenblatt, F.: Principles of Neurodynamics: Perceptions and the Theory of Brain Mechanisms. Spartan Books (1961)Google Scholar
  5. 5.
    Treisman, A.M., Schmidt, H.: Illusory conjunctions in the perception of objects. Cognit Psychol. 14(1), 107–141 (1982)CrossRefGoogle Scholar
  6. 6.
    Wolfe, J.M., Cave, K.R.: The psychophysical evidence review for a binding problem in human vision. Neuron 24(1), 11–17 (1999)CrossRefGoogle Scholar
  7. 7.
    Schoenfeld, M.A., Tempelmann, C., Martinez, A., Hopf, J.M., Sattler, C., Heinze, H.J., Hillyard, S.A.: Dynamics of feature binding during object-selective attention. Proceedings of the National Academy of Sciences of the United States of America 100(20), 11806–11811 (2003)CrossRefGoogle Scholar
  8. 8.
    Karayanidis, F., Michie, P.T.: Evidence of visual processing negativity with attention to orientation and color in central space. Electroencephalography and Clinical Neurophysiology 103(2), 282–297 (1997)CrossRefGoogle Scholar
  9. 9.
    Cortese, F., Bernstein, L.J., Alain, C.: Binding visual features during high-rate serial presentation. Neuroreport 10(7), 1565–1570 (1999)CrossRefGoogle Scholar
  10. 10.
    Smid, H.G.O.M., Jakob, A., Heinze, H.J.: An event-related brain potential study of visual selective attention to conjunctions of color and shape. Psychophysiology 36(2), 264–279 (1999)CrossRefGoogle Scholar
  11. 11.
    Schoenfeld, M.A., Woldorff, M., Duzel, E., Scheich, H., Heinze, H.J., Mangun, G.R.: Form-from-motion: MEG evidence for time course and processing sequence meg evidence for time course and processing sequence. Journal of Cognitive Neuroscience 15(2), 157–172 (2003)CrossRefGoogle Scholar
  12. 12.
    Tsotsos, J.K., Liu, Y., Martinez-Trujillo, J.C., Pomplun, M., Simine, E., Zhou, K.: Attending to visual motion. Comput. Vis. Image Und. 100(1-2), 3–40 (2005)CrossRefGoogle Scholar
  13. 13.
    Cutzu, F., Tsotsos, J.K.: The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item. Vision Research 43(2), 205–219 (2003)CrossRefGoogle Scholar
  14. 14.
    Hopf, J.M., Boehler, C.N., Luck, S.J., Tsotsos, J.K., Heinze, H.J., Schoenfeld, M.A.: Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proceedings of the National Academy of Sciences of the United States of America 103(4), 1053–1058 (2006)CrossRefGoogle Scholar
  15. 15.
    Treisman, A.M., Gelade, G.: Feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)CrossRefGoogle Scholar
  16. 16.
    Taraborelli, D.: Feature binding and object perception. Does object awareness require feature conjunction? In: ESPP 2002. 10th Annual Meeting of the European Society for Philosophy and Psychology, Lyon (2002)Google Scholar
  17. 17.
    Robertson, L.: Space, Objects, Brains and Minds. Essays in Cognitive Psychology. Psychology Press (2004)Google Scholar
  18. 18.
    Koch, C.: A theoretical analysis of the electrical properties of an x-cell in the cat’s LGN: does the spine-triad circuit subserve selective visual attention? Technical report, MIT, Artificial Intelligence Laboratory (1984)Google Scholar
  19. 19.
    Sherman, S.M., Koch, C.: The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research 63, 1–20 (1986)CrossRefGoogle Scholar
  20. 20.
    Li, Z.: A saliency map in primary visual cortex. Trends in Cognitive Sciences 6(1), 9–16 (2002)CrossRefGoogle Scholar
  21. 21.
    Lee, T., Yang, C., Romero, R., Mumford, D.: Neural activity in early visual cortex reflects behavioral experience and higher order perceptual saliency. Nature Neuroscience 5(6), 589–597 (2002)CrossRefGoogle Scholar
  22. 22.
    Moran, J., Desimone, R.: Selective attention gates visual processing in the extrastriate cortex. Science 229(4715), 782–784 (1985)Google Scholar
  23. 23.
    Tsotsos, J.K.: Analyzing vision at the complexity level. Behavioral and Brain Sciences 13(3), 423–444 (1990)CrossRefGoogle Scholar
  24. 24.
    Schall, J.D.: Neural basis of saccade target selection. Reviews in Neuroscience 6(1), 63–85 (1995)CrossRefGoogle Scholar
  25. 25.
    Steinman, B.A., Steinman, S.B., Lehmkuhle, S.: Visual attention mechanisms show a center-surround organization. Vision Research 35(13), 1859–1869 (1995)CrossRefGoogle Scholar
  26. 26.
    Caputo, G., Guerra, S.: Attentional selection by distracter suppression. Vision Research 38(5), 669–689 (1998)CrossRefGoogle Scholar
  27. 27.
    Bahcall, D.O., Kowler, E.: Attentional interference at small spatial separations. Vision Research 39(1), 71–86 (1999)CrossRefGoogle Scholar
  28. 28.
    Mounts, J.R., Melara, R.D.: Attentional selection of objects or features: Evidence from a modified search task. Perception & Psychophysics 61(2), 322–341 (1999)CrossRefGoogle Scholar
  29. 29.
    Mounts, J.R.: Evidence for suppressive mechanisms in attentional selection: feature singletons produce inhibitory surrounds. Perception & Psychophysics 62(5), 969–983 (2000)CrossRefGoogle Scholar
  30. 30.
    Vanduffel, W., Tootell, R.B.H., Orban, G.A.: Attention-dependent suppression of metabolic activity in the early stages of the macaque visual system. Cerebral Cortex 10(2), 109–126 (2000)CrossRefGoogle Scholar
  31. 31.
    Kristjansson, A., Nakayama, K.: The attentional blink in space and time. Vision Res. 42(17), 2039–2050 (2002)CrossRefGoogle Scholar
  32. 32.
    Slotnick, S.D., Hopfinger, J.B., Klein, S.A., Sutter, E.E.: Darkness beyond the light: attentional inhibition surrounding the classic spotlight. Neuroreport 13(6), 773–778 (2002)CrossRefGoogle Scholar
  33. 33.
    Slotnick, S.D., Schwarzbach, J., Yantis, S.: Attentional inhibition of visual processing in human striate and extrastriate cortex. Neuroimage 19(4), 1602–1611 (2003)CrossRefGoogle Scholar
  34. 34.
    Müller, N.G., Kleinschmidt, A.: The attentional ‘spotlight’s’ penumbra: center-surround modulation in striate cortex. Neuroreport 15(6), 977–980 (2004)CrossRefGoogle Scholar
  35. 35.
    Schall, J.D.: On the role of frontal eye field in guiding attention and saccades. Vision Research 44(12), 1453–1467 (2004)CrossRefGoogle Scholar
  36. 36.
    Müller, N.G., Mollenhauer, M., Rösler, A., Kleinschmidt, A.: The attentional field has a Mexican hat distribution. Vision Research 45(9), 1129–1137 (2005)CrossRefGoogle Scholar
  37. 37.
    Rothenstein, A.L., Zaharescu, A., Tsotsos, J.K.: Second-order (non-Fourier) attention-based face detection. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 518–527. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  38. 38.
    Bellhumer, P.N., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(7), 711–720 (1997)CrossRefGoogle Scholar
  39. 39.
    Rothenstein, A.L., Tsotsos, J.K.: Selective Tuning: Feature Binding Through Selective Attention. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 548–557. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  40. 40.
    Földiák, P., Young, M.: Sparse coding in the primate cortex. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 895–898. MIT Press, Cambridge (1995)Google Scholar
  41. 41.
    Mehta, A.D., Ulbert, I., Schroeder, C.E.: Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cerebral Cortex 10(4), 343–358 (2000)CrossRefGoogle Scholar
  42. 42.
    Bullier, J.: Integrated model of visual processing. Brain Research Reviews 36(2-3), 96–107 (2001)CrossRefGoogle Scholar
  43. 43.
    Barlow, H.B.: Single units and sensation: A neuron doctrine for perceptual psychology? Perception 1(4), 371–394 (1972)CrossRefGoogle Scholar
  44. 44.
    Milner, P.: A model for visual shape recognition. Psychol. Rev. 81, 521–535 (1974)CrossRefGoogle Scholar
  45. 45.
    von der Malsburg, C.: Nervous structures with dynamical links. Ber. Bunsenges. Phys. Chem. 89, 703–710 (1985)CrossRefGoogle Scholar
  46. 46.
    Singer, W.: Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999)CrossRefGoogle Scholar
  47. 47.
    Shadlen, M.N., Movshon, J.A.: Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24, 67–77 (1999)CrossRefGoogle Scholar
  48. 48.
    Biederman, I.: Perceiving real-world scenes. Science 177(43), 77–80 (1972)CrossRefGoogle Scholar
  49. 49.
    Thorpe, S., Fize, D., Marlot, C.: Speed of processing in the human visual system. Nature 381(6582), 520–522 (1996)CrossRefGoogle Scholar
  50. 50.
    Evans, K.K., Treisman, A.M.: Perception of objects in natural scenes: Is it really attention free? Journal of Experimental Psychology: Human Perception and Performance 31(6), 1476–1492 (2005)Google Scholar
  51. 51.
    Haynes, J.D., Tregellas, J., Rees, G.: Attentional integration between anatomically distinct stimulus representations in early visual cortex. Proc. Natl. Acad. Sci. 102(41), 14925–14930 (2005)CrossRefGoogle Scholar
  52. 52.
    Pollen, D.A.: Explicit neural representations, recursive neural networks and conscious visual perception. Cerebral Cortex 13(8), 807–814 (2003)CrossRefGoogle Scholar
  53. 53.
    Rothenstein, A.L., Zaharescu, A., Tsotsos, J.K.: TarzaNN: A general purpose neural network simulator for visual attention modeling. In: Paletta, L., Tsotsos, J.K., Rome, E., Humphreys, G.W. (eds.) WAPCV 2004. LNCS, vol. 3368, pp. 159–167. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Albert L. Rothenstein
    • 1
  • John K. Tsotsos
    • 1
  1. 1.Centre for Vision Research and Dept. of Computer Science & Engineering, York University, TorontoCanada

Personalised recommendations