Advertisement

Biologically Inspired Framework for Learning and Abstract Representation of Attention Control

  • Hadi Fatemi Shariatpanahi
  • Majid Nili Ahmadabadi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4840)

Abstract

The goal of this research is to develop a framework that enables artificial agents to learn active control of their attention as a means toward efficient planning, decision-making, and recognition. The proposed method is inspired by recent findings in psychology and neuroscience that give rise to the assumption that sequential firing of mirror neurons are connected with prediction, recognition, and planning. As these capabilities are connected to active perception, we hypothesize that simulated sequential mirror neurons can provide an abstract representation of learned attention control.

The proposed framework consists of three phases. The first phase is designed for learning active control of attention using reinforcement learning. In the second phase, sequential concepts are extracted from the agent’s experience and sequential mirror neurons are generated. In the last phase the concepts represented by these sequential mirror neurons are employed for higher level motor-planning and control of attention, as well as recognition.

Keywords

Attention Control Active Perception Mirror Neurons Concept Learning Reinforcement Learning Temporally Extended Concepts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rizzolatti, G., Gentilucci, M.: Motor and visual-motor functions of the premotor cortex. In: Rakic, P., Singer, W. (eds.) Neurobiology of Neocortex, pp. 269–284. Wiley, Chichester (1988)Google Scholar
  2. 2.
    Mobahi, H., Ahmadabadi, M.N., Araabi, B.N.: A Biologically Inspired Method for Conceptual Imitation using Reinforcement Learning. Journal of Applied Artificial Intelligence 21(3), 155–183 (2007)CrossRefGoogle Scholar
  3. 3.
    Falck-Ytter, T., Gredbäck, G., von Hofsten, C.: Infants Predict other people’s action goals. Nature Neuroscience 9, 878–879 (2006)CrossRefGoogle Scholar
  4. 4.
    Valpola, H.: Development of Representations, Categories and Concepts-a Hypothesis. In: Proc. of the 6th IEEE International Symposium on Computational Intelligence in Robotics and Automation, Espoo, Finland, pp. 593–599 (2005)Google Scholar
  5. 5.
    Gilbert, C.D., Sigman, M., Crist, R.E.: The neural basis of perceptual learning. Neuron 31, 681–697 (2001)CrossRefGoogle Scholar
  6. 6.
    Miller, E.K.: The prefrontal cortex and cognitive control. Nature Reviews Neuroscience 1, 59–65 (2000)CrossRefGoogle Scholar
  7. 7.
    Rybak, I.A., Gusakova, V.I., Golovan, A.V., Podladchikova, L.N., Shevtsova, N.A.: A model of attention-guided visual perception and recognition. Vision Research 38, 2387–2400 (1998)CrossRefGoogle Scholar
  8. 8.
    Triesch, J., Ballard, D.H., Hayhoe, M.M., Sullivan, B.T.: What you see is what you need. Journal of Vision 3(1), 86–94 (2003)CrossRefGoogle Scholar
  9. 9.
    Navalpakkam, V., Itti, L.: Modeling the influence of task on attention. Vision Research 45, 205–231 (2005)CrossRefGoogle Scholar
  10. 10.
    Clark, A.: Where brain, body, and world collide. Journal of Cognitive Systems Research 1, 5–17 (1999)CrossRefGoogle Scholar
  11. 11.
    Didday, R.L., Arbib, M.A.: Eye Movements and Visual Perception: A “Two Visual System” Model. Int. J. Man-Machine Stud. 7, 547–569 (1975)CrossRefzbMATHGoogle Scholar
  12. 12.
    Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience 5, 1–7 (2004)CrossRefGoogle Scholar
  13. 13.
    Tsotsos, J.K.: Analyzing vision at the complexity level. Behavioral and Brain Sciences 13, 423–469 (1990)CrossRefGoogle Scholar
  14. 14.
    Itti, L., Koch, C.: Computational Modeling of Visual Attention. Nature Reviews Neuroscience 2, 195–203 (2001)CrossRefGoogle Scholar
  15. 15.
    Cowey, A.: Projection of the retina onto striate and prestriate cortex in the squirrel monkey, Saimiri sciureus. Journal of Neurophysiology 27, 266–393 (1964)Google Scholar
  16. 16.
    Stone, J., Fukuda, Y.: Properties of cat retinal ganglion cells: a comparison of W-cell with X- and Y-cells. Journal of Neurophysiology 37, 722–748 (1974)Google Scholar
  17. 17.
    Wilson, J.R., Sherman, S.M.: Receptive-field characteristics of neurons in cat striate cortex: changes with visual field eccentricity. Journal of Neurophysiology 39, 512–533 (1976)Google Scholar
  18. 18.
    Van Essen, D.: Functional organization of primate visual cortex. In: Peters, A., Jones, E.G. (eds.) Cerebral Cortex, pp. 259–329. Plenum, New York (1985)Google Scholar
  19. 19.
    Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4, 219–227 (1985)Google Scholar
  20. 20.
    Kustov, A.A., Robinson, D.L.: Shared neural control of attentional shifts and eye movements. Nature 384, 74–77 (1996)CrossRefGoogle Scholar
  21. 21.
    Klein, R.M.: Inhibition of return. Trends in Cognitive Sciences 4, 138–147 (2000)CrossRefGoogle Scholar
  22. 22.
    Noton, D., Stark, L.: Scanpaths in eye movements during pattern recognition. Science 171, 72–75 (1971)CrossRefGoogle Scholar
  23. 23.
    Posner, M.I., Presti, D.E.: Selective attention and cognitive control. Trends in Neuroscience 10, 13–17 (1987)CrossRefGoogle Scholar
  24. 24.
    Corbetta, M., Kincade, J.M., Ollinger, J.M., McAvoy, M.P., Shulman, G.L.: Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience 3, 292–297 (2000)CrossRefGoogle Scholar
  25. 25.
    Hopfinger, J.B., Buonocore, M.H., Mangun, G.R.: The neural mechanisms of top-down attentional control. Nature Neuroscience 3, 284–291 (2000)CrossRefGoogle Scholar
  26. 26.
    Motter, B.C.: Attention in the Animal Brain. In: MIT Encyclopedia of Cognitive Sciences, pp. 41–43 (2000)Google Scholar
  27. 27.
    Fadiga, L., Fogassi, L., Pavesi, G., Rizzolatti, G.: Motor facilitation during action observation: a magnetic stimulation study. Journal of Neurophysiology 73(6), 2608–2611 (1995)Google Scholar
  28. 28.
    Keysers, C., Kohler, E., Umiltà, M.A., Nanetti, L., Fogassi, L., Gallese, V.: Audiovisual mirror neurons and action recognition. Experimental Brain Research 153(4), 628–636 (2003)CrossRefGoogle Scholar
  29. 29.
    Longcamp, M., Anton, J.L., Roth, M., Velay, J.L.: Visual presentation of single letters activates a premotor area involved in writing. Neuroimage 19(4), 1492–1500 (2003)CrossRefGoogle Scholar
  30. 30.
    Exner, S.: Untersuchungen über die Lokalisation der Funktionen in der Großhirnrinde des Menschen. W. Braumüller, Wien (1881) Google Scholar
  31. 31.
    Longcamp, M., Zerbato-Poudou, M.T., Velay, J.L.: The influence of writing practice on letter recognition in preschool children: A comparison between handwriting and typing. Acta Psychologica 119(1), 67–79 (2005)CrossRefGoogle Scholar
  32. 32.
    Hulme, C.: The interaction of visual and motor memory for graphic forms following tracing. Quarterly Journal of Experimental Psychology 31(2), 249–261 (1979)CrossRefGoogle Scholar
  33. 33.
    Naka, M.: Repeated writing facilitates children’s memory for pseudocharacters and foreign letters. Memory and Cognition 26(4), 804–809 (1998)CrossRefGoogle Scholar
  34. 34.
    Fawcett, A.J., Nicolson, R.I., Dean, P.: Impaired performance of children with dyslexia on a range of cerebellar tasks. Annals of Dyslexia 46, 259–283 (1996)CrossRefGoogle Scholar
  35. 35.
    Nicolson, R.I., Fawcett, A.J., Berry, E.L., Jenkins, I.H., Dean, P., Brooks, D.J.: Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet 353(9165), 1662–1667 (1999)CrossRefGoogle Scholar
  36. 36.
    Velay, J.L., Daffaure, V., Giraud, K., Habib, M.: Interhemispheric sensorimotor integration in pointing movements: A study on dyslexic adults. Neuropsychologia 40(7), 827–834 (2002)CrossRefGoogle Scholar
  37. 37.
    Tanji, J., Shima, K.: Role for supplementary motor area cells in planning several movements ahead. Nature 371, 413–416 (1994)CrossRefGoogle Scholar
  38. 38.
    Shima, K., Mushiake, H., Saito, N., Tanji, J.: Role for cells in the presupplementary motor area in updating motor plans. Proc. Natl. Acad. Sci. 93, 8694–8698 (1996)CrossRefGoogle Scholar
  39. 39.
    Catalan, M.J., Honda, M., Weeks, R.A., Cohen, L.G., Hallett, M.: The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain 121(2), 253–264 (1998)CrossRefGoogle Scholar
  40. 40.
    Shima, K., Tanji, J.: Neuronal Activity in the Supplementary and Presupplementary Motor Areas for Temporal Organization of Multiple Movements. Journal of Neurophysiology 84(4), 2148–2160 (2000)Google Scholar
  41. 41.
    Hikosaka, O., Sakai, K., Miyauchi, S., Takino, R., Sasaki, Y., Putz, B.: Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. Journal of Neurophysiology 76(1), 617–621 (1996)Google Scholar
  42. 42.
    Lopes, M., Santos-Victor, J.: Visual learning by imitation with motor representations. IEEE Transactions on Systems, Man and Cybernetics, Part B 35(3), 438–449 (2005)CrossRefGoogle Scholar
  43. 43.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA (1998)Google Scholar
  44. 44.
    Rastegar, F., Ahmadabadi, M.N.: Extraction of temporally extended concepts for robot navigation. Technical Report, Dept. of ECE, University of Tehran (2006)Google Scholar
  45. 45.
    Reichle, E.D., Laurent, P.A.: Using Reinforcement to understand the emergence of “Intelligent” eye-movement behavior during reading. Psychological Review 113(2), 390–408 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hadi Fatemi Shariatpanahi
    • 1
  • Majid Nili Ahmadabadi
    • 1
    • 2
  1. 1.AI and Robotics Lab, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of TehranIran
  2. 2.School of Cognitive Sciences, IPM, TehranIran

Personalised recommendations