The Role of Attention in Creating a Cognitive System

  • John G. Taylor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4840)


The thesis presented here is that attention is the control system of the brain, and is used heavily to produce its cognitive powers. As such the design of a cognitive system can usefully be guided by the mechanisms used in the brain. We give short discussions of the nature of cognition and of attention, as well as some aspects of the early stages of attention in development. How certain basic components of the cognitive process can be created by using attention control is then considered based on a control model of attention. The paper finishes with the much more difficult problem of how consciousness might be produced through a more subtle approach to the attention control architecture. This allows the essential consciousness component assumed present in cognition to begin to be included, in a control efficient manner, in any general cognitive system architecture.


Episodic Memory Attention Control Cognitive System Attentional Blink Corollary Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vogel, E.K., Luck, S.J., Shapiro, K.: Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology 241, 1656–1674 (1998)Google Scholar
  2. 2.
    Taylor, J.G., Fragopanagos, N.: The Interaction of Attention and Emotion. Neural Networks 18(4), 353–369 (2005)CrossRefGoogle Scholar
  3. 3.
    Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention Ann. Rev. Neurosci. 18, 193–222 (1995)CrossRefGoogle Scholar
  4. 4.
    Koch, C., Ullman, S.: Shifts in selective visual attention - towards the underlying neural circuitry. Human Neurobiology 4, 214–227 (1985)Google Scholar
  5. 5.
    Walther, D., Koch, C.: Modelling attentional salience of proto-objects. Neural Networks 19(9), 1395–1407 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews, Neuroscience 3, 201–215 (2002)CrossRefGoogle Scholar
  7. 7.
    Corbetta, M., Tansy, A.P., Stanley, C.M., Astafiev, S.V., Snyder, A.Z., Shulman, G.L.: A functional MRI study of preparatory signals for spatial location and objects. Neuropsychologia 43, 2041–2056 (2005)CrossRefGoogle Scholar
  8. 8.
    Kanwisher, N., Wojciulik, E.: Visual attention: insights from brain imaging. Nat.Rev.Neurosci. 1, 91–100 (2000)CrossRefGoogle Scholar
  9. 9.
    Deco, G., Rolls, E.: neurodynamical cortical model of visual attention and invariant object recognition. Vision Research 44, 621–642 (2004)CrossRefGoogle Scholar
  10. 10.
    Mozer, M.C., Sitton, M.: Computational modeling of spatial attention. In: Pashler, H. (ed.) Attention, pp. 341–393. Taylor & Francis, New York (1998)Google Scholar
  11. 11.
    Taylor, J.G.: Attentional movement: the control basis for consciousness. Society for Neuroscience Abstracts, 26, 2231, 839.3 (2000)Google Scholar
  12. 12.
    Taylor, J.G.: Paying Attention to Consciousness. Prog in Neurobiology 71, 305–335 (2003)CrossRefGoogle Scholar
  13. 13.
    Taylor, J.G.: Paying attention to consciousness. Trends in Cognitive Sciences 6(5), 206–210 (2002a)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Taylor, J.G.: From Matter to Mind. Journal of Consciousness Studies 6, 3–22 (2002b)Google Scholar
  15. 15.
    Taylor, J.G., Rogers, M.: A control model of attention. Neural Networks 15, 309–326 (2002)CrossRefGoogle Scholar
  16. 16.
    Fragopanagos, N., Kockelkoren, S., Taylor, J.G.: A neurodynamic model of the attentional blink. Cognitive Brain Research 24, 568–586 (2005)CrossRefGoogle Scholar
  17. 17.
    Korsten, N., Fragopanagos, N., Hartley, M., Taylor, N., Taylor, J.G.: Attention as a Controller. Neural Networks 19(9), 1408–1421 (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Oakes, L.M., Ross-Sheehy, S., Luck, S.J.: Rapid development of feature binding in visual short-term memory. Psychological Science 17(9), 781–787 (2006)CrossRefGoogle Scholar
  19. 19.
    Hurley, S., Nudds, M.: Rationality in Animals? Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  20. 20.
    Taylor, J.G., Hartley, M.H.: Through Reasoning to Cognitive Machines. IEEE Journal Special Issue on Cognition 2(3), 12–24 (2007)Google Scholar
  21. 21.
    Pessoa, L., McKenna, M., Gutierrez, E., Ungerleider, L.: Neural processing of emotional faces requires attention. Proc. Natl. Acad. Sci. USA 99, 11458–11463 (2002)CrossRefGoogle Scholar
  22. 22.
    Pessoa, L., Ungerleider, L.: Neural correlates of change detection and change blindness in working memory. Cerebral Cortex 14, 511–520 (2004)CrossRefGoogle Scholar
  23. 23.
    Gergely, G., Czibra, G.: Teleological reasoning in infancy: the naïve theory of rational action. Trends in Cognitive Sciences 7(7), 287–292 (2003)CrossRefGoogle Scholar
  24. 24.
    Shoemaker, S.: Self-reference and self-awareness. The Journal of Philosophy 45, 555–567 (1968)CrossRefGoogle Scholar
  25. 25.
    Taylor, J.G.: The importance of the parietal lobes for consciousness. Consciousness & Cognition 10, 379–417 (2001)CrossRefGoogle Scholar
  26. 26.
    Taylor, J.G.: On the neurodynamics of the creation of consciousness. Cognitive Neurodynamics 1, 97–118 (2007)CrossRefGoogle Scholar
  27. 27.
    Praamstra, P., Oostenveld, R.: Attention and movement-related motor cortex activation: a high density EEG study of spatial stimulus-response compatibility. Cognitive Brain Research 16, 309–323 (2003)CrossRefGoogle Scholar
  28. 28.
    Clarke, J.M., Halgren, E., Chauvel, P.: Intracranial ERPs in humans during a lateralized visual oddball task:II. Temporal, parietal and frontal recordings. Clinical Neurophysiology 110, 1226–1244 (1999)CrossRefGoogle Scholar
  29. 29.
    Shinba, T.: Neuronal firing activity in the dorsal hippocampus during the auditory discrimination oddball task in awake rats. Cognitive Brain Research 8, 241–350 (1999)CrossRefGoogle Scholar
  30. 30.
    Baddeley, A.D.: The episodic buffer: a new component of working memory? Trends in Cognitive Sciences 4(11), 417–423 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • John G. Taylor
    • 1
  1. 1.Department of Mathematics, King’s College, Strand, London, WC2R2LSUK

Personalised recommendations