Advertisement

Context Driven Focus of Attention for Object Detection

  • Roland Perko
  • Aleš Leonardis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4840)

Abstract

Context plays an important role in general scene perception. In particular, it can provide cues about an object’s location within an image. In computer vision, object detectors typically ignore this information. We tackle this problem by presenting a concept of how to extract and learn contextual information from examples. This context is then used to calculate a focus of attention, that represents a prior for object detection. State-of-the-art local appearance-based object detection methods are then applied on selected parts of the image only. We demonstrate the performance of this approach on the task of pedestrian detection in urban scenes using a demanding image database. Results show that context awareness provides complementary information over pure local appearance-based processing. In addition, it cuts down the search complexity and increases the robustness of object detection.

Keywords

Feature Vector Contextual Information Object Detection Context Awareness Pedestrian Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Palmer, S.E.: The effects of contextual scenes on the identification of objects. Memory and Cognition 3, 519–526 (1975)CrossRefGoogle Scholar
  2. 2.
    Biederman, I.: Perceptual Organization. In: On the semantics of a glance at a scene, ch. 8, pp. 213–263. Lawrence Erlbaum, Mahwah, NJ (1981)Google Scholar
  3. 3.
    Bar, M.: Visual objects in context. Nature Reviews, Neuroscience 5, 617–629 (2004)CrossRefGoogle Scholar
  4. 4.
    Fei-Fei, L., Fergus, R., Torralba, A.: Recognizing and learning object categories. Tutorial presented at CVPR (2007), http://people.csail.mit.edu/torralba/shortCourseRLOC
  5. 5.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. JMLR (3), 993–1022 (2003)Google Scholar
  6. 6.
    Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: CVPR, vol. 2, pp. 524–531 (2005)Google Scholar
  7. 7.
    Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering object categories in image collections. In: ICCV, vol. 1, pp. 370–377 (2005)Google Scholar
  8. 8.
    Fischler, M., Elschlager, R.: The representation and matching of pictorial structures. IEEE Transactions on Computers 22(1), 67–92 (1973)CrossRefGoogle Scholar
  9. 9.
    Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. IJRS 61(1), 55–79 (2005)Google Scholar
  10. 10.
    Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. Dept. of Statistics, Stanford University, Technical Report (1998)Google Scholar
  11. 11.
    Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing features: Efficient boosting procedures for multiclass object detection. In: CVPR, vol. 2, pp. 762–769 (2004)Google Scholar
  12. 12.
    Perko, R., Leonardis, A.: Context awareness for object detection. In: OAGM/AAPR, pp. 65–72 (2007)Google Scholar
  13. 13.
    Oliva, A., Torralba, A., Guerin-Dugue, A., Herault, J.: Global semantic classification of scenes using power spectrum templates. In: CIR (1999)Google Scholar
  14. 14.
    Torralba, A., Sinha, P.: Statistical context priming for object detection. In: ICCV, vol. 1, pp. 763–770 (2001)Google Scholar
  15. 15.
    Torralba, A.: Contextual priming for object detection. IJCV 53(2), 153–167 (2003)CrossRefGoogle Scholar
  16. 16.
    Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: A database and web-based tool for image annotation. Technical Report AIM-2005-025, MIT AI Lab Memo (2005)Google Scholar
  17. 17.
    Hoiem, D., Efros, A.A., Hebert, M.: Geometric context from a single image. In: ICCV, vol. 1, pp. 654–661 (2005)Google Scholar
  18. 18.
    Hoiem, D., Efros, A.A., Hebert, M.: Putting objects in perspective. In: CVPR, vol. 2, pp. 2137–2144 (2006)Google Scholar
  19. 19.
    Bileschi, S.M.: StreetScenes: Towards Scene Understanding in Still Images. PhD thesis, Massachusetts Institute of Technology (2006)Google Scholar
  20. 20.
    Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. PAMI 29(3), 411–426 (2007)CrossRefGoogle Scholar
  21. 21.
    Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image segmentation using expectation-maximization and its application to image querying. PAMI 24(8), 1026–1038 (2002)CrossRefGoogle Scholar
  22. 22.
    Wolf, L., Bileschi, S.M.: A critical view of context. In: CVPR, pp. 251–261 (2006)Google Scholar
  23. 23.
    Schiele, B., Crowley, J.L.: Recognition without correspondence using multidimensional receptive field histograms. IJCV 36(1), 31–50 (2000)CrossRefGoogle Scholar
  24. 24.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings 4th Alvey Visual Conference, pp. 189–192 (1988)Google Scholar
  25. 25.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 2, pp. 886–893 (2005)Google Scholar
  26. 26.
    Zhang, W., Košecká, J.: Image based localization in urban environments. In: 3DPVT, pp. 33–40 (2006)Google Scholar
  27. 27.
    Seemann, E., Leibe, B., Schiele, B.: Multi-aspect detection of articulated objects. In: CVPR, vol. 2, pp. 1582–1588 (2006)Google Scholar
  28. 28.
    Leibe, B.: Interleaved Object Categorization and Segmentation. PhD thesis, ETH Zurich, PhD Thesis No. 15752 (2004)Google Scholar
  29. 29.
    Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 10(3), 61–74 (1999)Google Scholar
  30. 30.
    Ren, X., Fowlkes, C., Malik, J.: Figure/ground assignment in natural images. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 614–627. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Roland Perko
    • 1
  • Aleš Leonardis
    • 1
  1. 1.University of LjubljanaSlovenia

Personalised recommendations