Skip to main content

Towards a Complete Covering of SBML Functionalities

  • Conference paper
Membrane Computing (WMC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4860))

Included in the following conference series:

Abstract

The complexity of biological systems is at times made worse by the diversity of ways in which they are described: the organic evolution of the science over many years has led to a myriad of conventions. This confusion is reflected by the in-silico representation of biological models, where many different computational paradigms and formalisms are used in a variety of software tools.

The Systems Biology Markup Language (SBML) is an attempt to overcome this issue and aims to simplify the exchange of information by imposing a standardized way of representing models. The success of the idea is attested to by the fact that more than 110 software tools currently support SBML in one form or another.

This work focuses on the translation of the Cyto-Sim simulation language (based on a discrete stochastic implementation of P systems) to SBML. We consider the issues both from the point of view of the employed software architecture and from that of the mapping between the features of the Cyto-Sim language and those of SBML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, R.B., et al.: Ribonucleic acid markup language (2002), http://www.smi.stanford.edu/projects/helix/riboml/

  2. Bergmann, F.T., Sauro, H.M.: Sbw - a modular framework for systems biology. In: Proceedings of the 37th conference on Winter simulation. Winter Simulation Conference, pp. 1637–1645 (2006)

    Google Scholar 

  3. Cavaliere, M., Sedwards, S.: Modelling cellular processes using membrane systems with peripheral and integral proteins. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 108–126. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Cuellar, A.A., Lloyd, C.M., Nielsen, P.F., Bullivant, D.P., Nickerson, D.P., Hunter, P.J.: An overview of cellml 1.1, a biological model description language. Simulation 79(12), 740–747 (2003)

    Article  Google Scholar 

  5. Deckard, A., Bergmann, F.T., Sauro, H.M.: Supporting the sbml layout extension. Bioinformatics 22(23), 2966–2967 (2006)

    Article  Google Scholar 

  6. Eccher, C., Priami, C.: Design and implementation of a tool for translating sbml into the biochemical stochastic pi-calculus. Bioinformatics 22(24), 3075–3308 (2006)

    Article  Google Scholar 

  7. Fenyo, D.: The biopolymer markup language. Bioinformatics 15(4), 339–340 (1999)

    Article  Google Scholar 

  8. Finney, A.M., Hucka, M.: Systems biology markup language: Level 2 and beyond. Biochem. Soc. Trans. 31, 1472–1473 (2003)

    Article  Google Scholar 

  9. Project GlassFish: The jaxb project. https://jaxb.dev.java.net/

  10. Hanisch, D., Zimmer, R., Lengauer, T.: Proml - the protein markup language for specification of protein sequences, structures and families. In Silico Biology 2(3), 313–324 (2002)

    Google Scholar 

  11. Hedley, W.J., Nelson, M.R., Bullivant, D.P., Nielson, P.F.: A short introduction to cellml. Philos. Trans. R. Soc. Lond. A 359, 1073–1089 (2001)

    Article  MATH  Google Scholar 

  12. Hermjakob, H., et al.: The hupopsiŠs molecular interaction format - a community standard for the representation of protein interaction data. Nature Biotechnol. 22(2), 177–183 (2004)

    Article  Google Scholar 

  13. Hucka, M., et al.: The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  14. Doubletwist Inc.: Agave: architecture for genomic annotation, visualization and exchange (2001), http://www.agavexml.org

  15. LabBook Inc.: Bsml (bioinformatics sequence markup language) 2.2 (2002), http://www.labbook.com/products/xmlbsml.asp

  16. Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G.R., Wu, G.R., Matthews, L., Lewis, S., Birney, E., Stein, L.: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33, D428–D432 (2005)

    Google Scholar 

  17. Kanehisa, M., Goto, S.: Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28(1), 27–30 (2000)

    Article  Google Scholar 

  18. Keating, S.M., Bornstein, B.J., Finney, A., Hucka, M.: Sbmltoolbox: an sbml toolbox for matlab users. Bioinformatics 22(10), 1275–1277 (2006)

    Article  Google Scholar 

  19. Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem 267, 1583–1588 (2000)

    Article  Google Scholar 

  20. Kleingeld, P., Brown, E.: Cosmopolitanism. In: The Stanford Encyclopedia of Philosophy, Edward N. Zalta (winter 2006)

    Google Scholar 

  21. Le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka M.: Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research 34, D689–D691 (2006)

    Google Scholar 

  22. Liao, Y.M., Ghanadan, H.: The chemical markup language. Anal. Chem. 74(13), 389A-390A (2002)

    Google Scholar 

  23. Machné, R., Finney, A., Müller, S., Lu, J., Widder, S., Flamm, C.: The sbml ode solver library: a native api for symbolic and fast numerical analysis of reaction networks. Bioinformatics 22(11), 1406–1407 (2006)

    Article  Google Scholar 

  24. McArthur, D.C.: An extensible xml schema definition for automated exchange of protein data: Proximl (protein extensible markup language) (2001), http://www.cse.ucsc.edu/douglas/proximl/

  25. Mendes, P.: Gepasi: a software package for modeling the dynamics, steady states, and control of biochemical and other systems. Comput. Applic. Biosci. 9, 563–571 (1993)

    Google Scholar 

  26. Mi, H., Lazareva-Ulitsky, B., Loo, A., Kejariwal, R., Vandergriff, J., Rabkin, S., Guo, N., Muruganujan, A., Doremieux, O., Campbell, M.J.: The panther database of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 33, D284–D288 (2005)

    Google Scholar 

  27. The Microsoft Research University of Trento. Centre for Computational and Systems Biology. Web page of Cyto-Sim (2006), http://www.cosbi.eu/Rpty_Soft_CytoSim.php

  28. Olivier, B.G., Snoep, J.L.: Web-based modelling using jws online. Bioinformatics 20, 2143–2144 (2004)

    Article  Google Scholar 

  29. Apache XML project: Xerces2 java parser 2.9.0 (2004), http://xml.apache.org/xerces2-j/

  30. Rodriguez, N., Donizelli, M., Le Novère, N.: Sbmleditor: effective creation of models in the systems biology markup language (sbml). Bioinformatics 8(79) (published online March 2007)

    Google Scholar 

  31. Rohwer, J.M., Meadowi, N.D., Rosemani, S., Westerhoff, H.V., Postma, P.W.: Understanding glucose transport by the bacterial phosphoenolpyruvate: glycose phosphotransferase system on the basis of kinetic measurements in vitro. The Journal of Biological Chemistry 275(45), 34909–34921 (2000)

    Article  Google Scholar 

  32. Schilstra, M.J., Li, L., Matthews, J., Finney, A., Hucka, M., Le Novère, N.: Cellml2sbml: conversion of cellml into sbml. Bioinformatics 22(8), 1018–1020 (2006)

    Article  Google Scholar 

  33. Shapiro, B.E., Hucka, M., Finney, A., Doyle, J.: Mathsbml: a package for manipulating sbml-based biological models. Bioinformatics 20(16), 2829–2831 (2004)

    Article  Google Scholar 

  34. Spellman, P.T., Miller, M.: Design and implementation of microarray gene expression markup language (mage-ml). Genome Biol. 3(9), 0046.0041–0046.0049 (2002)

    Google Scholar 

  35. Taylor, C.F., Paton, N.W.: A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nature Biotechnol. 21, 247–254 (2003)

    Article  Google Scholar 

  36. Zhike, Z., Klipp, E.: Sbml-pet: a systems biology markup language-based parameter estimation tool. Bioinformatics 22(21), 2704–2705 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George Eleftherakis Petros Kefalas Gheorghe Păun Grzegorz Rozenberg Arto Salomaa

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mazza, T. (2007). Towards a Complete Covering of SBML Functionalities. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2007. Lecture Notes in Computer Science, vol 4860. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77312-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77312-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77311-5

  • Online ISBN: 978-3-540-77312-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics