Skip to main content

Pharmacological Support of the Failing Right Ventricle

  • Conference paper

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2008))

Abstract

After years of relative neglect, the role of the right ventricle in maintaining circulatory homeostasis is now generally recognized. Right ventricular (RV) dysfunction is a frequent cause of low output syndrome after cardiac surgery and appears to be associated with a higher mortality than left ventricular (LV) failure in the perioperative setting [1]. In the acute respiratory distress syndrome (ARDS) and in primary pulmonary hypertension [2] RV failure has an independent detrimental effect on clinical outcome. This pathophysiological condition remains a clinical challenge for which our current therapeutic approaches do not yet provide a satisfactory answer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davila-Roman VG, Waggoner AD, Hopkins WE, Barzilai B (1995) Right ventricular dysfunction in low output syndrome after cardiac operations: assessment by transesophageal echocardiography. Ann Thorac Surg 60:1081–1086

    Article  CAS  PubMed  Google Scholar 

  2. Monchi M, Bellenfant F, Cariou A, et al (1998) Early predictive factors of survival in the acute respiratory distress syndrome. A multivariate analysis. Am J Respir Crit Care Med 158:1076–1081

    CAS  PubMed  Google Scholar 

  3. Mansencal N, Joseph T, Vieillard-Baron A, et al (2003) Comparison of different echocardiographic indexes secondary to right ventricular obstruction in acute pulmonary embolism. Am J Cardiol 92:116–119

    Article  PubMed  Google Scholar 

  4. Missant C, Rex S, Claus P, Mertens L, Wouters PF (2007) Load-sensitivity of regional tissue deformation in the right ventricle: isovolumic versus ejection-phase indices of contractility. Heart [Epub ahead of print]

    Google Scholar 

  5. Santamore WP, Gray L Jr (1995) Significant left ventricular contributions to right ventricular systolic function. Mechanism and clinical implications. Chest 107:1134–1145

    Article  CAS  PubMed  Google Scholar 

  6. Fattouch K, Sbraga F, Bianco G, et al (2005) Inhaled prostacyclin, nitric oxide, and nitroprusside in pulmonary hypertension after mitral valve replacement. J Cardiac Surg 20:171–176

    Article  Google Scholar 

  7. Melot C, Lejeune P, Leeman M, Moraine JJ, Naeije R (1989) Prostaglandin E1 in the adult respiratory distress syndrome. Benefit for pulmonary hypertension and cost for pulmonary gas exchange. Am Rev Respir Dis 139:106–110

    CAS  PubMed  Google Scholar 

  8. Ichinose F, Roberts JD, Zapol WM (2004) Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 109:3106–3111

    Article  PubMed  Google Scholar 

  9. Dellinger RP, Zimmerman JL, Taylor RW, et al (1998) Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled Nitric Oxide in ARDS Study Group. Crit Care Med 26:15–23

    Article  CAS  PubMed  Google Scholar 

  10. Olschewski H, Rose F, Schermuly R, et al (2004) Prostacyclin and its analogues in the treatment of pulmonary hypertension. Pharmacol Ther 102:139–153

    Article  CAS  PubMed  Google Scholar 

  11. Haraldsson S.A., Kieler-Jensen N, Ricksten SE (2001) The additive pulmonary vasodilatory effects of inhaled prostacyclin and inhaled milrinone in postcardiac surgical patients with pulmonary hypertension. Anesth Analg 93:1439–1445

    Article  CAS  Google Scholar 

  12. Olschewski H, Rohde B, Behr J, et al (2003) Pharmacodynamics and pharmacokinetics of inhaled iloprost, aerosolized by three different devices, in severe pulmonary hypertension. Chest 124:1294–1304

    Article  CAS  PubMed  Google Scholar 

  13. Hoeper MM, Olschewski H, Ghofrani HA, et al (2000) A comparison of the acute hemodynamic effects of inhaled nitric oxide and aerosolized iloprost in primary pulmonary hypertension. German PPH study group. J Am Coll Cardiol 35:176–182

    Article  CAS  PubMed  Google Scholar 

  14. Rex S, Schaelte G, Metzelder S, et al (2007) Inhaled iloprost to control pulmonary artery hypertension in patients undergoing mitral valve surgery: a prospective, randomized-controlled trial. Acta Anaesthesiol Scand 51:1258–1267

    CAS  PubMed  Google Scholar 

  15. Galie N, Torbicki A, Barst R, et al (2004) Guidelines on diagnosis and treatment of pulmonary arterial hypertension. The Task Force on Diagnosis and Treatment of Pulmonary Arterial Hypertension of the European Society of Cardiology. Eur Heart J 25:2243–2278

    Article  PubMed  Google Scholar 

  16. Atz AM, Lefler AK, Fairbrother DL, Uber WE, Bradley SM (2002) Sildenafil augments the effect of inhaled nitric oxide for postoperative pulmonary hypertensive crises. J Thorac Cardiovasc Surg 124:628–629

    Article  PubMed  Google Scholar 

  17. Ghofrani HA, Wiedemann R, Rose F, et al (2002) Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann Intern Med 136:515–522

    CAS  PubMed  Google Scholar 

  18. Ichinose F, Erana-Garcia J, Hromi J, et al (2001) Nebulized sildenafil is a selective pulmonary vasodilator in lambs with acute pulmonary hypertension. Crit Care Med 29:1000–1005

    Article  CAS  PubMed  Google Scholar 

  19. Trachte AL, Lobato EB, Urdaneta F, et al (2005) Oral sildenafil reduces pulmonary hypertension after cardiac surgery. Ann Thorac Surg 79:194–197

    Article  PubMed  Google Scholar 

  20. Schulze-Neick I, Hartenstein P, Li J, et al (2003) Intravenous sildenafil is a potent pulmonary vasodilator in children with congenital heart disease. Circulation 108(Suppl 1): II167–II173

    PubMed  Google Scholar 

  21. Nagendran J, Archer SL, Soliman D, et al (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116:238–248

    Article  CAS  PubMed  Google Scholar 

  22. Motte S, McEntee K, Naeije R (2006) Endothelin receptor antagonists. Pharmacol Ther 110: 386–414

    Article  CAS  PubMed  Google Scholar 

  23. Dorman BH, Kratz JM, Multani MM, et al (2004) A prospective, randomized study of endothelin and postoperative recovery in off-pump versus conventional coronary artery bypass surgery. J Cardiothorac Vasc Anesth 18:25–29

    Article  CAS  PubMed  Google Scholar 

  24. Kaisers U, Busch T, Wolf S, et al (2000) Inhaled endothelin A antagonist improves arterial oxygenation in experimental acute lung injury. Intensive Care Med 26:1334–1342

    Article  CAS  PubMed  Google Scholar 

  25. Ikonomidis JS, Hilton EJ, Payne K, et al (2007) Selective endothelin-A receptor inhibition after cardiac surgery: a safety and feasibility study. Ann Thorac Surg 83:2153–2160

    Article  PubMed  Google Scholar 

  26. Phua J, Lim TK, Lee KH (2005) B-type natriuretic peptide: issues for the intensivist and pulmonologist. Crit Care Med 33:2094–2013

    Article  PubMed  Google Scholar 

  27. Mentzer RM, Oz MC, Sladen RN, et al (2007) Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery: the NAPA Trial. J Am Coll Cardiol 49:716–726

    Article  CAS  PubMed  Google Scholar 

  28. Nagaya N, Nishikimi T, Uematsu M, et al (2000) Haemodynamic and hormonal effects of adrenomedullin in patients with pulmonary hypertension. Heart 84:653–658

    Article  CAS  PubMed  Google Scholar 

  29. Nagaya N, Kyotani S, Uematsu M, et al (2004) Effects of adrenomedullin inhalation on hemodynamics and exercise capacity in patients with idiopathic pulmonary arterial hypertension. Circulation 109:351–356

    Article  PubMed  Google Scholar 

  30. Leather HA, Segers P, Berends N, Vandermeersch E, Wouters PF (2002) Effects of vasopressin on right ventricular function in an experimental model of acute pulmonary hypertension. Crit Care Med 30:2548–2552

    Article  CAS  PubMed  Google Scholar 

  31. Rich S, Gubin S, Hart K (1990) The effects of phenylephrine on right ventricular performance in patients with pulmonary hypertension. Chest 98:1102–1106

    Article  CAS  PubMed  Google Scholar 

  32. Price LC, Forrest P, Sodhi V, et al (2007) Use of vasopressin after Caesarean section in idiopathic pulmonary arterial hypertension. Br J Anaesth 99:552–555

    Article  CAS  PubMed  Google Scholar 

  33. Ducas J, Stitz M, Gu S, Schick U, Prewitt RM (1992) Pulmonary vascular pressure-flow characteristics. Effects of dopamine before and after pulmonary embolism. Am Rev Respir Dis 146:307–312

    CAS  PubMed  Google Scholar 

  34. Cheung PY, Barrington KJ (2001) The effects of dopamine and epinephrine on hemodynamics and oxygen metabolism in hypoxic anesthetized piglets. Crit Care 5:158–166

    Article  CAS  PubMed  Google Scholar 

  35. Kerbaul F, Rondelet B, Demester JP, et al (2006) Effects of levosimendan versus dobutamine on pressure load-induced right ventricular failure. Crit Care Med 34:2814–2819

    Article  CAS  PubMed  Google Scholar 

  36. Tarnow J, Komar K (1988) Altered hemodynamic response to dobutamine in relation to the degree of preoperative beta-adrenoceptor blockade. Anesthesiology 68:912–919

    Article  CAS  PubMed  Google Scholar 

  37. Ducas J, Duval D, Dasilva H, Boiteau P, Prewitt RM (1987) Treatment of canine pulmonary hypertension: effects of norepinephrine and isoproterenol on pulmonary vascular pressureflow characteristics. Circulation 75:235–242

    CAS  PubMed  Google Scholar 

  38. Deb B, Bradford K, Pearl RG (2000) Additive effects of inhaled nitric oxide and intravenous milrinone in experimental pulmonary hypertension. Crit Care Med 28:795–799

    Article  CAS  PubMed  Google Scholar 

  39. Hentschel T, Yin N, Riad A, et al (2007) Inhalation of the phosphodiesterase-3 inhibitor milrinone attenuates pulmonary hypertension in a rat model of congestive heart failure. Anesthesiology 106:124–131

    Article  CAS  PubMed  Google Scholar 

  40. Lamarche Y, Perrault LP, Maltais S, Tetreault K, Lambert J, Denault AY (2007) Preliminary experience with inhaled milrinone in cardiac surgery. Eur J Cardiothorac Surg 31:1081–1087

    Article  PubMed  Google Scholar 

  41. Lobato EB, Beaver T, Muehlschlegel J, Kirby DS, Klodell C, Sidi A (2006) Treatment with phosphodiesterase inhibitors type III and V: milrinone and sildenafil is an effective combination during thromboxane-induced acute pulmonary hypertension. Br J Anaesth 96:317–322

    Article  CAS  PubMed  Google Scholar 

  42. Haikala H, Kaivola J, Nissinen E, Wall P, Levijoki J, Linden IB (1995) Cardiac troponin C as a target protein for a novel calcium sensitizing drug, levosimendan. J Mol Cell Cardiol 27:1859–1866

    Article  CAS  PubMed  Google Scholar 

  43. Lilleberg J, Nieminen MS, Akkila J, et al (1998) Effects of a new calcium sensitizer, levosimendan, on haemodynamics, coronary blood flow and myocardial substrate utilization early after coronary artery bypass grafting. Eur Heart J 19:660–668

    Article  CAS  PubMed  Google Scholar 

  44. Pollesello P, Mebazaa A (2004) ATP-dependent potassium channels as a key target for the treatment of myocardial and vascular dysfunction. Curr Opin Crit Care 10:436–441

    Article  PubMed  Google Scholar 

  45. Grossini E, Caimmi PP, Molinari C, Teodori G, Vacca G (2005) Hemodynamic effect of intracoronary administration of levosimendan in the anesthetized pig. J Cardiovasc Pharmacol 46:333–342

    Article  CAS  PubMed  Google Scholar 

  46. Missant C, Rex S, Segers P, Wouters PF (2007) Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction. Crit Care Med 35:707–715

    Article  CAS  PubMed  Google Scholar 

  47. Parissis JT, Paraskevaidis I, Bistola V, et al (2006) Effects of levosimendan on right ventricular function in patients with advanced heart failure. Am J Cardiol 98:1489–1492

    Article  CAS  PubMed  Google Scholar 

  48. Morelli A, Teboul JL, Maggiore SM, et al (2006) Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med 34:2287–2293

    Article  CAS  PubMed  Google Scholar 

  49. Kivikko M, Antila S, Eha J, Lehtonen L, Pentikainen PJ (2002) Pharmacokinetics of levosimendan and its metabolites during and after a 24-hour continuous infusion in patients with severe heart failure. Int J Clin Pharmacol Ther 40:465–471

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wouters, P.F., Rex, S., Missant, C. (2008). Pharmacological Support of the Failing Right Ventricle. In: Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77290-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77290-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77289-7

  • Online ISBN: 978-3-540-77290-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics