Skip to main content

Cardiac Dysfunction in Septic Shock

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2008))

Abstract

Clinically, we observe septic shock as increased capillary permeability, hypovolemia, decreased cardiac output, tachycardia, and hypotension. Sepsis-related systolic and diastolic dysfunction are often characterized by depressed ejection fraction, decreased contractility, and impaired relaxation. Mechanisms of cardiac dysfunction require understanding in order to better attack the clinical challenges of treating septic shock. The inflammatory cascade, autonomic dysregulation, adrenergic receptor downregulation, abnormal myocardial calcium utilization, biochemical uncoupling of mitochondrial energy production, and apoptosis have been implicated in sepsis- related cardiovascular dysfunction. The cellular and biochemical relationships that mitigate the pathophysiology of systolic and diastolic dysfunction in sepsis will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cinel I, Dellinger RP (2007) Advances in pathogenesis and management of sepsis. Curr Opin in Infect Dis 20:345–352

    Article  Google Scholar 

  2. Dellinger RP (2003) Cardiovascular management of septic shock. Crit Care Med 31:946–955

    Article  PubMed  Google Scholar 

  3. Frantz S, Kobzik L, Kim YD, et al (1999) Toll 4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 104:271–280

    Article  CAS  PubMed  Google Scholar 

  4. Baumgarten G, Knuefermann P, Nozaki N, Sivasubramanian N, Mann DL, Vallejo JG (2001) In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: the role of toll-like receptor-4. J Infect Dis 183:1617–1624

    Article  CAS  PubMed  Google Scholar 

  5. Knuefermann P, Nemoto S, Misra A, et al (2002) CD14-deficient mice are protected against lipopolysaccharide-induced cardiac inflammation and left ventricular dysfunction. Circulation 106:2608–2615

    Article  CAS  PubMed  Google Scholar 

  6. Baumgarten G, Knuefermann P, Schuhmacher G, et al (2006) Toll-like receptor 4, nitric oxide, and myocardial depression in endotoxemia. Shock 25:43–49

    Article  CAS  PubMed  Google Scholar 

  7. Zhu X, Bagchi A, Zhao H, et al (2007) Toll-like receptor 2 activation by bacterial peptidoglycan-associated lipoprotein activates cardiomyocyte inflammation and contractile dysfunction. Crit Care Med 35:886–892

    Article  CAS  PubMed  Google Scholar 

  8. Brown MA, Jones WK (2004) NF-kappaB action in sepsis: the innate immune system and the heart. Front Biosci 9:1201–1217

    Article  CAS  PubMed  Google Scholar 

  9. Kim SC, Ghanem A, Stapel H, et al (2007) Toll-like receptor 4 deficiency: smaller infarcts, but no gain in function. BMC Physiol 7:5

    Article  PubMed  Google Scholar 

  10. Van der Poll T, Romijn JA, Endert E, Borm JJ, Buller HR, Sauerwein HP (1991) Tumor necrosis factor mimics the metabolic response to acute infection in healthy humans. Am J Physiol 261:E457–465

    PubMed  Google Scholar 

  11. Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–1553

    Article  CAS  PubMed  Google Scholar 

  12. Kumar A, Kumar A, Paladugu B, Mensing J, Parrillo JE (2007) Transforming growth factor-beta1 blocks in vitro cardiac myocyte depression induced by tumor necrosis factor-alpha, interleukin-1beta, and human septic shock serum. Crit Care Med 35:358–364

    Article  CAS  PubMed  Google Scholar 

  13. Joulin O, Petillot P, Labalette M, Lancel S, Neviere R (2007) Cytokine profile of human septic shock serum inducing cardiomyocyte contractile dysfunction. Physiol Res 56:291–297

    CAS  PubMed  Google Scholar 

  14. Chopra M, Sharma AC (2007) Distinct cardiodynamic and molecular characteristics during early and late stages of sepsis-induced myocardial dysfunction. Life Sci 81:306–316

    Article  CAS  PubMed  Google Scholar 

  15. Schluter KD, Weber M, Schraven E, Piper HM (1994) NO donor SIN-1 protects against reoxygenation-induced cardiomyocyte injury by a dual action. Am J Physiol 267:H1461–1466

    CAS  PubMed  Google Scholar 

  16. Hataishi R, Rodrigues AC, Neilan TG, et al (2006) Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 291:H379–384

    Article  CAS  PubMed  Google Scholar 

  17. Xie YW, Kaminski PM, Wolin MS (1998) Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic reoxygenation. Circ Res 82:891–897

    CAS  PubMed  Google Scholar 

  18. Wang W, Sawicki G, Schulz R (2002) Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res 53:165–174

    Article  CAS  PubMed  Google Scholar 

  19. Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73:637–644

    CAS  PubMed  Google Scholar 

  20. Dhainaut JF, Huyghebaert MF, Monsallier JF, et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–541

    CAS  PubMed  Google Scholar 

  21. Barth E, Albuszies G, Baumgart K, et al (2007) Glucose metabolism and catecholamines. Crit Care Med 35(suppl 9):S508–518

    Article  CAS  PubMed  Google Scholar 

  22. Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223

    Article  CAS  PubMed  Google Scholar 

  23. Suliman HB, Welty-Wolf KE, Carraway MS, Tatro L, Piantadosi CA (2004) Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 64: 279–288

    Article  CAS  PubMed  Google Scholar 

  24. Soriano FG, Nogueira AC, Caldini EG, et al (2006) Potential role of poly (adenosine 5′-diphosphate-ribose) polymerase activation in the pathogenesis of myocardial contractile dysfunction associated with human septic shock. Crit Care Med 34:1073–1079

    Article  CAS  PubMed  Google Scholar 

  25. Larche J, Lancel S, Hassoun SM, et al (2006) Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol 48:377–385

    Article  CAS  PubMed  Google Scholar 

  26. Levy RJ, Vijayasarathy C, Raj NR, Avadhani NG, Deutschman CS (2004) Competitive and noncompetitive inhibition of myocardial cytochrome c oxidase in sepsis. Shock 21:110–114

    Article  CAS  PubMed  Google Scholar 

  27. Piel DA, Gruber PJ, Weinheimer CJ, et al (2007) Mitochondrial resuscitation with exogenous cytochrome c in the septic heart. Crit Care Med 35:2120–2127

    Article  CAS  PubMed  Google Scholar 

  28. Hotchkiss RS, Tinsley KW, Swanson PE, et al (1999) Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci USA 96:14541–14546

    Article  CAS  PubMed  Google Scholar 

  29. Cinel I, Buyukafsar K, Cinel L, et al (2002) The role of poly (ADP-ribose) synthetase inhibition in preventing endotoxemia-induced intestinal epithelial apoptosis. Pharmacol Res 46: 119–127

    Article  CAS  PubMed  Google Scholar 

  30. Neviere R, Fauvel H, Chopin C, et al (2001) Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am J Respir Crit Care Med 163:218–225

    CAS  PubMed  Google Scholar 

  31. Lancel S, Petillot P, Favory R, et al (2005) Expression of apoptosis regulatory factors during myocardial dysfunction in endotoxemic rats. Crit Care Med 33:492–496

    Article  CAS  PubMed  Google Scholar 

  32. Carlson DL, Willis MS, White DJ, Horton JW, Giroir BP (2005) Tumor necrosis factor-alpha-induced caspase activation mediates endotoxin-related cardiac dysfunction. Crit Care Med 33:1021–1028

    Article  CAS  PubMed  Google Scholar 

  33. Lancel S, Joulin O, Favory R, et al (2005) Ventricular myocyte caspases are directly responsible for endotoxin-induced cardiac dysfunction. Circulation 111:2596–2604

    Article  CAS  PubMed  Google Scholar 

  34. Ren J, Ren BH, Sharma AC (2004) Sepsis-induced depressed contractile function of isolated ventricular myocytes is due to altered calcium transient properties. Shock 18:285–288

    Article  Google Scholar 

  35. Dong LW, Wu LL, Ji Y, Liu MS (2001) Impairment of the ryanodine-sensitive calcium release channels in the cardiac sarcoplasmic reticulum and its underlying mechanism during the hypodynamic phase of sepsis. Shock 16:33–39

    Article  CAS  PubMed  Google Scholar 

  36. Zhong J, Hwang T-C, Adams HR, Rubin LJ (1997) Reduced L-type calcium current in ventricular myocytes from endotoxemic guinea pigs. Am J Physiol Heart Circ Physiol 273:2312–2324

    Google Scholar 

  37. Parrillo JE, Parker MM, Natanson C, et al (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113:227–242

    CAS  PubMed  Google Scholar 

  38. Fernandes Junior CJ, Iervolino M, Neves RA, Sampaio EL, Knobel E (1994) Interstitial myocarditis in sepsis. Am J Cardiol 74:958–962

    Article  Google Scholar 

  39. Rackow EC, Kaufman BS, Falk JL, Astiz ME, Weil MH (1987) Hemodynamic response to fluid repletion in patients with septic shock: evidence for early depression of cardiac performance. Circ Shock 22:11–22

    CAS  PubMed  Google Scholar 

  40. Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE (1987) Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 15:923–929

    Article  CAS  PubMed  Google Scholar 

  41. Boldt J, Suttner SW (2006) Physiology and pathophysiology of the natriuretic peptide system. In: Vincent JL (ed) Yearbook of Intensive Care and Medicine, Springer-Verlag, Heidelberg, pp 101–109

    Chapter  Google Scholar 

  42. Maeder M, Fehr T, Rickli H, Ammann P (2006) Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest 129:1349–1366

    Article  CAS  PubMed  Google Scholar 

  43. McLean AS, Huang SJ, Hyams S, et al (2007) Prognostic values of B-type natriuretic peptide in severe sepsis and septic shock. Crit Care Med 35:1019–1026

    Article  CAS  PubMed  Google Scholar 

  44. Ammann P, Maggiorini M, Bertel O, et al (2003) Troponin as a risk factor for mortality in critically ill patients without acute coronary syndromes. J Am Coll Cardiol 41:2004–2009

    Article  CAS  PubMed  Google Scholar 

  45. Pirracchio R, Cholley B, De Hert S, Solal AC, Mebazaa A (2007) Diastolic heart failure in anaesthesia and critical care. Br J Anaesth 98:707–721

    Article  CAS  PubMed  Google Scholar 

  46. Rabuel C, Mebazaa A (2006) Septic shock: a heart story since the 1960s. Intensive Care Med 32:799–807

    Article  CAS  PubMed  Google Scholar 

  47. Aurigemma GP, Gaasch WH (2004) Clinical practice. Diastolic heart failure. N Engl J Med 351:1097–105

    Article  CAS  PubMed  Google Scholar 

  48. Pennock GD, Yun DD, Agarwal PG, Spooner PH, Goldman S (1997) Echocardiographic changes after myocardial infarction in a model of left ventricular diastolic dysfunction. Am J Physiol 273:H2018–2029

    CAS  PubMed  Google Scholar 

  49. De Hert SG, Gillebert TC, Ten Broecke PW, Mertens E, Rodrigus IE, Moulijn AC (1999) Contraction-relaxation coupling and impaired left ventricular performance in coronary surgery patients. Anesthesiology 90:748–757

    Article  PubMed  Google Scholar 

  50. Tavernier B, Garrigue D, Boulle C, Vallet B, Adnet P (1998) Myofilament calcium sensitivity is decreased in skinned cardiac fibres of endotoxin-treated rabbits. Cardiovasc Res 38: 472–479

    Article  CAS  PubMed  Google Scholar 

  51. Rabuel C, Renaud E, Brealey D, et al (2004) Human septic myopathy: induction of cyclooxygenase, heme oxygenase and activation of the ubiquitin proteolytic pathway. Anesthesiology 101:583–590

    Article  CAS  PubMed  Google Scholar 

  52. Levy B, Dusang B, Annane D, Gibot S, Bollaert PE (2005) Cardiovascular response to dopamine and early prediction of outcome in septic shock: a prospective multiple-center study. Crit Care Med 33:2172–2177

    Article  CAS  PubMed  Google Scholar 

  53. Silverman HJ, Penaranda R, Orens JB, Lee NH (1993) Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 21:31–39

    Article  CAS  PubMed  Google Scholar 

  54. Levy RJ, Vijayasarathy C, Raj NR, Avadhani NG, Deutschman CS (2004) Competitive and noncompetitive inhibition of myocardial cytochrome c oxidase in sepsis. Shock 21:110–114

    Article  CAS  PubMed  Google Scholar 

  55. Budinger GR, Duranteau J, Chandel NS, Schumacker PT (1998) Hibernation during hypoxia in cardiomyocytes. Role of mitochondria as the O2 sensor. J Biol Chem 273:3320–3326

    Article  CAS  PubMed  Google Scholar 

  56. Levy RJ, Piel DA, Acton PD, et al (2005) Evidence of myocardial hibernation in the septic heart. Crit Care Med 33:2752–2756

    Article  PubMed  Google Scholar 

  57. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150

    Article  CAS  PubMed  Google Scholar 

  58. Levy B (2006) Lactate and shock states; the metabolic view. Curr Opin Crit Care Med 12:315–321

    Article  Google Scholar 

  59. Revelly JP, Tappy L, Martinez A, et al (2005) Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med 33:2235–2240

    Article  CAS  PubMed  Google Scholar 

  60. Levy B, Mansart A, Montemont C, et al (2007) Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock. Intensive Care Med 33:495–502

    Article  CAS  PubMed  Google Scholar 

  61. Myburgh JA (2006) An appraisal of selection and use of catecholamines in septic shock — old becomes new again. Critical Care and Resuscitation 8:353–360

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cinel, I., Nanda, R., Dellinger, R.P. (2008). Cardiac Dysfunction in Septic Shock. In: Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77290-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77290-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77289-7

  • Online ISBN: 978-3-540-77290-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics