Skip to main content

Microstructure Refining and Strengthening of Martensitic Steel

  • Chapter
Ultra-Fine Grained Steels

Abstract

The improvement of delayed fracture (DF) and fatigue resistance for steels, especially the former of martensitic steel, through microstructure refining and strengthening are the main concern in this chapter. Firstly, the effects of microstructure refinement in toughening and improving DF property of martensitic steels are studied. Secondly, methods for strengthening grain boundaries such as reducing the amount of segregated embrittling elements at grain boundaries and controlling grain boundary carbides are discussed. Thirdly, the effect of controlling hydrogen trap through microalloying element carbides on improving DF resistance is investigated. Fourthly, the effect of cleanliness on the fatigue performance of martensitic steels is discussed. Finally, new high strength martensitic steels ADF series with excellent combination of toughness, DF and fatigue resistance as well as its characteristics and industrial applications were introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Kanazawa K (1996) Influences of non-metallic inclusion and carbide on high-cycle fatigue strength of tool steel. J Soc Mat Sci Japan, 45(1):9–15

    CAS  Google Scholar 

  • Archer R S, Briggs J Z, Loeb, Jr. C M (eds) (1970) Molybdenum—Steels, Iron and Alloys. Climax Molybdenum Co., New York

    Google Scholar 

  • Banerji S K, McMahon Jr. C J, Feng H C (1978) Intergranular fracture in 4340-type steels: Effects of impurities and hydrogen. Metall. Trans. A, 9A(2):237–247

    ADS  CAS  Google Scholar 

  • Briant C L, Feng H C, McMahon Jr. C J (1978) Embrittlement of a 5 pct nickel high strength steel by impurities and their effects on hydrogen-induced cracking. Metall. Trans. A, 9A(5):625–633

    ADS  CAS  Google Scholar 

  • Choi H C, Lee D L, Choo W Y (2001) Development of 1300MPa-grade bolt steels with high delayed fracture resistance. In: Workshop on the new generation steel-NG steel’2001. The Chinese Society for Metals, pp 75–78

    Google Scholar 

  • Chu W Y et al (eds) (2000) Fracture and Environmental Fracture. Science Press, Beijing

    Google Scholar 

  • Craig B D (1982) The effect of phosphorus content on the hydrogen stress cracking of high strength 4130 steel. Metrall. Trans. A, 13A(5):907–912

    Article  ADS  MathSciNet  Google Scholar 

  • Chu W Y (ed) (1988) Hydrogen Damage and Delayed Fracture. Chinese Metallurgical Industry Press, Beijing

    Google Scholar 

  • Chu W Y et al (1981) Mechanism of Stress Corrosion Cracking of Low Alloy Steel in Water. Corrosion, 37(6): 320–323

    CAS  Google Scholar 

  • Davis R A, Dreyer G A, Gallaugher W C (1964) Stress corrosion cracking study of several high strength steels. Corrosion, 20(3):93–103

    Google Scholar 

  • Dumoulin P, Guttmann M, Foucault M et al (1980) Role of molybdenum in phosphorus-induced temper embrittlement. Metal Science, (1):1–15

    Google Scholar 

  • Furuya Y, Matsuoka S, Kimura T, et al (2005) Effects of inclusion and ODA sizes on gigacycle fatigue properties of high-strength steels. Tetsu-to-Hagane, 91(8): 630–638

    CAS  Google Scholar 

  • Gojic M, Kosec L (1997) The susceptibility to the hydrogen embrittlement of low alloy Cr and CrMo steels. ISIJ Inter., 37(4): 412–418

    Article  CAS  Google Scholar 

  • Grobner P J, Sponseller D L, Diesburg (1979) Effect of Molybdenum content on the sulfide stress cracking resistance of AISI 4130-type steel with 0.035Cb. Corrosion, 35(6): 240–250

    Google Scholar 

  • Hsu T Y (ed) (1999) Martensitic Transformation and Martensite. Science Press, Beijing

    Google Scholar 

  • Hui W J, Dong H, Chen S L (1998) Effects of non-metallic inclusions and surface conditions on the fatigue properties of high strength spring steels. J of Special Steel, 19(6): 8–14

    Google Scholar 

  • Hui W J, Dong H, Weng Y Q, et al (2006) Stress corrosion cracking behavior of Cr-Mo-V high strength steel. Trans of Mater and Heat Treatment, 27(6):37–42

    ADS  CAS  Google Scholar 

  • Hui W J, Dong H, Weng Y Q, et al (2005) Delayed Fracture Behavior of Titanium-Containing Cr-Mo Type High Strength Steel. J. of Iron & Steel Research Inter., 12(1): 43–49

    CAS  Google Scholar 

  • Hui Weijun, Dong Han, Weng Yuqing, et al (2004) Delayed fracture behavior of ultrafine grained high strength steel. Acta Metall Sinica, 40(6):561–568

    CAS  Google Scholar 

  • Hui W J, Dong H, Weng Y Q, et al (2004) Effect of molybdenum on delayed fracture behavior of high strength steel. Acta Metall Sinica, 40(12):1274–1280

    CAS  Google Scholar 

  • Hui W J, Dong H, Weng Y Q (2003) Delayed Fracture Behavior of CrMo Type High Strength Steel Containing Vanadium. J. of Iron and Steel Research Inter., 10(4):63–67

    CAS  Google Scholar 

  • Hui W J (2003) Study of Delayed Fracture Behavior of High Strength Bolt Steel. Dissertation, Central Iron & Steel Research Institute

    Google Scholar 

  • Hui W J, Dong H, Weng Y Q (2002). Effect of Molybdenum on mechanical property and delayed fracture resistance of high strength steel. In: Proceedings of First International Conference on Advanced Structural Steels(ICASS 2002), May 22-24, Tsukuba Inter. Congress Center, Tsukuba, Japan, pp.243–244

    Google Scholar 

  • Hui W J, Dong H, Weng Y Q (2001) Development of high strength bolt steels with high delayed fracture resistance. Iron and Steel, 36(3):69–73

    CAS  Google Scholar 

  • Iikubo T, Ito Y, Hayashi H, Saito T, Takagi N (1986) Effects of non-metallic inclusions on fatigue properties of ultra-clean spring steels. Electric Furnace Steel(Denki-Seiko), 57(l):23–32

    CAS  Google Scholar 

  • Isokawa K, Namiki K (1983) Effect of sulphur contents on delayed failure susceptibility of high strength steels for bolts. Electric Furnace Steel(Denki-Seiko), 54(2):75–83

    CAS  Google Scholar 

  • Kawahara J, Tanabe K, Banno T, Yoshida M (1992) Advance of valve spring steel. Wire J International, (11):55–61

    Google Scholar 

  • Kawasaki K, Chiba T, Koga H, et al (1987) Effect of austenite grain size on mechanical properties in spring steel austenitised, quenched and tempered by induction heating. Tetsu-to-Hagane, 73(16): 2298–2305

    CAS  Google Scholar 

  • Komazazki S, Watanabe S, Misawa T (2003) Influence of phosphorus and boron on hydrogen embrittlement susceptibility of high strength low alloy steel. ISIJ Inter, 43(11):1851–1857

    Article  CAS  Google Scholar 

  • Kushida T, Matsumoto H, Kuratomi N, et al (1996) Delayed fracture and hydrogen absorption of 1.3GPa grade high strength bolt steel. Tetsu-to-Hagane, 82(4): 297–302

    CAS  Google Scholar 

  • Kushida T, Matsumoto H, Nakasato F (1998) Study on delayed fracture of high strength steels by thermal hydrogen analysis technique. Sumimoto Metals, 50(3): 25–30

    Google Scholar 

  • Lee W P (2000) Development of high performance structural steels for 21st century in Korea. In: Ultra Steel 2000, Proceedings of the International Workshop on the Innovative Structural Materials for Infrastructure in 21st Century. January 12-13, Tsukuba, Japan pp33–63

    Google Scholar 

  • Lei T Q et al (eds) (1979) Ausforming of Steels. Machinery Industry Press, Beijing

    Google Scholar 

  • Li G F, Wu R G, Lei T C (1992) Carbide-matrix interface mechanism of stress corrosion cracking behavior of high-strength CrMo Steels. Metall. Trans. A, 23A(10):2879–2885

    ADS  CAS  Google Scholar 

  • Li G F, Wu R G, Lei T C (1990) Effect of prior austenite grain size on stress corrosion cracking of a high-strength steel. Metall. Trans. A, 21A:503–505

    CAS  Google Scholar 

  • Maropoulos S, Paul J D H, Ridley N (1993) Microstructure-property relationships in tempered low ally Cr-Mo-3.5Ni-V steel. Mater. Sci. Tech., 9(11):1014–1019

    CAS  Google Scholar 

  • Matsumoto H, Nakasato F, Kushida T (1996) Delayed fracture and culprit hydrogen in steel. Sumimoto Metals, 48(4):128–131

    Google Scholar 

  • Matsuyama S (ed) (1989) Delayed Fracture. Nikkan-Kogyo Press, Tokyo

    Google Scholar 

  • McDarmaid D S (1978) Effects of different austenitization treatments on KIC, KISCC, and other mechanical properties of 300M steel bar. Metals Technology, 5(1):7–16

    CAS  Google Scholar 

  • Murakami Y, Kodama S, Konuma S (1989) Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. Int J Fatigue, 11(5):291–298

    Article  CAS  Google Scholar 

  • Murakami Y, Usuki H (1989) Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels II: fatigue linit evaluation based on statistics for extreme values of inclusion size. Int J Fatigue, 11(5):299–307

    Article  CAS  Google Scholar 

  • Nagumo M (2001) Function of hydrogen in embrittlement of high-strength steels. ISIJ International, 41(6):590–598

    Article  CAS  Google Scholar 

  • Nagumo M, Nakamura M, Takai K (2001) Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels. Metall Mater Trans A, 32A(2):339–347

    Article  CAS  Google Scholar 

  • Nakayama T (1999) Corrosion protection technology for improvement of strength on steels. Zairyo-to-Kankyo, 48(8):484–489

    CAS  Google Scholar 

  • Namiki K, Isokawa K (1984) Effect of sulphur and phosphorus on the delayed fracture resistance and mechanical properties of SAE 1541. Electric Furnace Steel(Denki-Seiko), 55(2):101–109

    CAS  Google Scholar 

  • Nie Y H, Hui W J, Fu W T, et al (2007) Effect of cleanliness on fatigue fracture behavior of 42CrMo steel. Chinese J of Materials Research, 21:123–128 Suppl.

    Google Scholar 

  • Omura T, Kushida T, Nakasato F, et al (2005) Hydrogen absorption into high strength bolts under atmospheric exposure and delayed fracture susceptibility evaluation. Tetsu-to-Hagane, 91(5):478–484

    CAS  Google Scholar 

  • Padmanabhan R, Wood W E (1983) Hydrogen induced cracking in a low alloy steel. Metall. Trans. A, 14A(11):2347–2356

    ADS  CAS  Google Scholar 

  • Perkins K M, Bache M R (2005) The influence of inclusions on the fatigue performance of a low pressure turbine blade steel. Int J Fatigue, 27:610–616

    Article  CAS  Google Scholar 

  • Porter L F, Dabkowski D S (1970) Grain-size control by thermal cycling. In: Burke J J, Weiss V (eds) Ultra-fine Grain Metals. Syracuse University Press, New York

    Google Scholar 

  • Proctor R P M., Paxton H W (1969) The effect of prior-austenite grain-size on the stress-corrosion cracking susceptibility of AISI 4340 steel. Trans. Am. Soc. Metals, 62(4):989–999

    CAS  Google Scholar 

  • Sato A (2000) Research project on innovative steels in Japan (STX-21 Project). In: Ultra Steel 2000, Proceedings of the International Workshop on the Innovative Structural Materials for Infrastructure in 21st Century. January 12–13, Tsukuba, Japan ppl–10

    Google Scholar 

  • Smith D W, Hehemann R F (1971) Influence of structural parameters on the yield strength of tempered martensite and lower bainite. J Iron Steel Inst, 209:476–481

    CAS  Google Scholar 

  • Suzuki N, Ishii N, Miyagawa T, et al (1993) Estimation of delayed fracture property of steels. Tetsu-to-Hagane, 79(2):227–232

    CAS  Google Scholar 

  • Swarr T, Krauss G (1976) The effect of structure on the deformation of as-quenched and tempered martensite in an Fe-0.2 pct C alloy. Metall. Trans. A, 7A(l):41–48

    ADS  CAS  Google Scholar 

  • Tarai T, Yamasaki S (2002) Evaluation method of delayed fracture property and overcoming techniques of delayed fracture of high strength steels. Tetsu-to-Hagane, 88(10):612–619

    Google Scholar 

  • Terasaki S (2001) Delayed fracture properties of SCM440 steel with various strength levels derived through modified ausforming. CAMP-ISIJ, 14:1309

    Google Scholar 

  • Tien J K (1976) Diffusion and the dislocation sweeping mechanism for hydrogen transport. In: Thompson A W, Bernstein I M (eds) Effect of Hydrogen on Behavior of Materials, Met. Soc. AIME

    Google Scholar 

  • Tsuchida T, Hara T, Tsuzaki K (2002) Relationship between microstructure and hydrogen absorption behavior in a V-bearing high strength steel. Tetsu-to-Hagane, 88(11):771–778

    CAS  Google Scholar 

  • Wang Q Y, Berad J Y, Dubarre A, et al (1999) Gigacycle fatigue of ferrous alloys. Fatigue Fract Engng Mater Struct, 1999, 22:667–672

    CAS  Google Scholar 

  • Wang Q Y, Berard J Y, Rathery S, Bathias C (1999) High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires. Fatigue Fract Engng Mater Struct, 22:673–677

    CAS  Google Scholar 

  • Wei F G, Hara T, Tsuchida T, Tsuzaki K (2003) Hydrogen trapping in quenched and tempered 0.40C-0.30Ti steel containing biomodaly dispersed TiC particles. ISIJ Inter., 43(4):539–547

    Article  CAS  Google Scholar 

  • Weng Y Q (2003) Microstructural refinement of structural steels. Iron and Steel, 38(5):1–11

    ADS  CAS  Google Scholar 

  • Weng Y Q (2000) New generation of Iron and steel material in China. In: Ultra Steel 2000, Proceedings of the International Workshop on the Innovative Structural Materials for Infrastructure in 21st Century. January 12-13, Tsukuba, Japan pp 11–32

    Google Scholar 

  • Weng Y Q (1984) Grain boundary segregation and intergranular brittle fracture of ferrous alloys. Dissertation, University of Pennsylvania

    Google Scholar 

  • Weng Y Q, McMahon Jr. C J (1987) Interaction of phosphorus, carbon, manganese, and chroumium in intergranular embrittlement of iron. Mater. Sci. and Engin., 3(3):207–216

    CAS  Google Scholar 

  • Wittig J E, Joshi A (1990) High-resolution auger electron spectroscopy of grain boundary phosphorus segregation in NiCrMoV and NiCr steels. Metall. Trans. A, 21A(10):2817–2821

    ADS  CAS  Google Scholar 

  • Wu R G, Li R S (1984) Effect of quenching from intercritical temperature on hydrogen-induced cracking in 30CrMnSiA steel. J of Chinese Society of Corrosion and Protection, 4(l):22–28

    Google Scholar 

  • Yamasaki S (1998) Improvement of delayed fracture property of high strength steel by TMCP. CAMP-ISIJ, 11:1242

    Google Scholar 

  • Yamasaki S, Takahashi T (1997) Delayed fracture mechanism in high strength steels by acoustic emission source wave analysis. Tetsu-to-Hagane, 83(7):460–465

    CAS  Google Scholar 

  • Yang Z G, Li S X, Zhang J M, et al (2004) The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime. Acta Materialia, 52(18):5235–5241

    Article  CAS  Google Scholar 

  • Yu J, McMahon Jr C J (1980) The effects of composition and carbide precipitation on temper embrittlement of 2.25Cr-1Mo steel: Part II the effects of Mn and Si. Metall. Trans. A, 11A(2):291–300

    ADS  CAS  Google Scholar 

  • Zhang J M, Li S X, Yang Z G, et al (2007) Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime. International J of Fatigue, 29(4):765–771

    Article  CAS  MathSciNet  Google Scholar 

  • Zhang J M, Yang Z G, Li S X, et al (2006) Ultra high cycle fatigue behavior of automotive high strength steels 54SiCrV6 and 54SiCr6. Acta Metall Sinica, 42(3):259–264

    CAS  MathSciNet  Google Scholar 

  • Zhang X Z, Ma Y, Zhou H H (2001) Electron energy-loss spectroscopy study of grain boundaries in ultrahigh strength CrMo steel. In:Workshop on New Generation Steel, Nov. 13–16, 2001, Beijing, China, pp 185–188

    Google Scholar 

  • Zhong P, Gu B Z, Jin J J, et al (1995) Mechanical properties and stress corrosion cracking of 16Co14Ni10Cr2Mo steel. J of Aeronautical Materials, 15(4):41–46

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Metallurgical Industry Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Hui, W. (2009). Microstructure Refining and Strengthening of Martensitic Steel. In: Ultra-Fine Grained Steels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77230-9_6

Download citation

Publish with us

Policies and ethics