Advertisement

On Quasi-cyclic Codes over Integer Residue Rings

  • Maheshanand
  • Siri Krishan Wasan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)

Abstract

In this paper we consider some properties of quasi-cyclic codes over the integer residue rings. A quasi-cyclic code over ℤ k , the ring of integers modulo k, reduces to a direct product of quasi-cyclic codes over \({\mathbb{Z}}_{p_i^{e_i}}\), \(k = \prod_{i=1}^s p_i^{e_i}\), p i a prime. Let T be the standard shift operator. A linear code \(\mathcal{C}\) over a ring R is called an l-quasi-cyclic code if \(T^l(c) \in \mathcal{C}\), whenever \( c\in \mathcal{C}\). It is shown that if (m, q) = 1, q = p r , p a prime, then an l-quasi-cyclic code of length lm over ℤ q is a direct product of quasi-cylcic codes over some Galois extension rings of ℤ q . We have discussed about the structure of the generator of a 1-generator l-quasi-cyclic code of length lm over ℤ q . A method to obtain quasi-cyclic codes over ℤ q , which are free modules over ℤ q , has been discussed.

Keywords

Quasi-cyclic codes circulant matrices Galois rings Hensel’s lift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aydin, N., Ray-Chaudhuri, D.K.: Quasi-Cyclic Codes over ℤ4 and Some New Binary Codes. IEEE Trans. Inform. Theory 48, 2065–2069 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Blake, I.F.: Codes Over Certain Rings. Inform. Control 20, 396–404 (1972)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Calderbank, A.R., Sloane, N.J.A.: Modular and P-Adic Cyclic Codes. Designs Codes and Cryptography 6, 21–35 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen, C.L., Peterson, W.W., Weldon, E.J.: Some Results on Quasi-Cyclic Codes. Inform. Control 15, 407–423 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Daskalov, R., Hristov, P.: New Binary One-Generator Quasi-Cyclic Codes. IEEE Trans. Inform. Theory 49, 3001–3005 (2003)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Fossorier, M.P.C.: Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices. IEEE Trans. Inform. Theory 50, 1788–1793 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Sole, P.: The ℤ4-Lnearity of Kerdock, Preparata, Goethal and Related Codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Huffman, W.C., Pless, V.: Fundamentals Of Error Correcting Codes. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  9. 9.
    Kanwar, P., Lopez-Permouth, S.R.: Cyclic Codes Over the Integers Modulo p m. Finite Fields and Their Applications 3, 334–352 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kasami, T.: A Gibert-Varshamov Bound for Quasi-Cyclic Codes of Rate 1/2. IEEE Trans. Inform. Theory 20, 679–680 (1974)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Ling, S., Sole, P.: On the Algebraic Structures of Quasi-Cyclic Codes I: Finite Fields. IEEE Trans. Inform. Theory 47, 2751–2760 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ling, S., Sole, P.: On the Algebraic Structures of Quasi-Cyclic Codes II: Chain Rings. Designs Codes and Cryptography 30, 113–130 (2001)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Ling, S., Sole, P.: On the Algebraic Structures of Quasi-Cyclic Codes III: Generator Theory. IEEE Trans. Inform. Theory 51, 2692–2700 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Macwilliams, F.J., Sloane, N.J.A.: The Theory Of Error Correcting Codes. North Holland Publishing Company, Amsterdam (1977)zbMATHGoogle Scholar
  15. 15.
    Norton, G.H., Salagean-Mandache, A.: On the Structures of Linear and Cyclic Codes Over Finite Chain Rings. Applicable Algebra in Engineering Communication and Computing 10, 489–506 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pless, V., Quian, J.: Cyclic Codes and Quadratic Residue Codes Over ℤ4. IEEE Trans. Of Inform. Theory 42, 1594–1600 (1996)zbMATHCrossRefGoogle Scholar
  17. 17.
    Seguin, G.E.: A Class of 1-Generator Quasi-Cyclic Codes. IEEE Trans. Inform. Theory 50, 1745–1753 (2004)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Siap, I., Aydin, N., Ray-Chaudhuri, D.K.: New Ternary Quasi-Cyclic Codes with Better Minimum Distances. IEEE Trans. Inform. Theory 46, 1554–1558 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tanner, R.M.: Towards Algebraic Theory of Turbo Codes. In: 2nd Int. Symp. on Turbo Codes, Brest (2000)Google Scholar
  20. 20.
    Wan, Z.X.: Quaternary Codes. World Scientific, Singapore (1997)zbMATHGoogle Scholar
  21. 21.
    Wasan, S.K.: On Codes over ℤm. IEEE Trans. Inform. Theory 28, 117–120 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Woo, S.S.: Free Cyclic Codes Over Finite Local Rings. Bull. Korean Math. Soc. 43, 723–735 (2006)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Maheshanand
    • 1
  • Siri Krishan Wasan
    • 2
  1. 1.Centre for Development of Advanced Computing, NoidaIndia
  2. 2.Department of Mathematics, Jamia Millia Islamia, New DelhiIndia

Personalised recommendations