Advertisement

Generalized Rotation Symmetric and Dihedral Symmetric Boolean Functions − 9 Variable Boolean Functions with Nonlinearity 242

  • Selçuk Kavut
  • Melek Diker Yücel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)

Abstract

Recently, 9-variable Boolean functions having nonlinearity 241, which is strictly greater than the bent concatenation bound of 240, have been discovered in the class of Rotation Symmetric Boolean Functions (RSBFs) by Kavut, Maitra and Yücel. In this paper, we present several 9-variable Boolean functions having nonlinearity of 242, which we obtain by suitably generalizing the classes of RSBFs and Dihedral Symmetric Boolean Functions (DSBFs). These functions do not have any zero in the Walsh spectrum values, hence they cannot be made balanced easily. This result also shows that the covering radius of the first order Reed-Muller code R(1, 9) is at least 242.

Keywords

Rotation symmetric boolean functions dihedral symmetric boolean functions nonlinearity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berlekamp, E.R., Welch, L.R.: Weight Distributions of the Dosets of the (32, 6) Reed-Muller code. IEEE Trans. Inform. Theory 18(1), 203–207 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brualdi, R.A., Cai, N., Pless, V.: Orphan Structure of the First Order Reed-Muller Codes. Discrete Mathematics 102, 239–247 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brualdi, R.A., Pless, V.S.: Orphans of the First Order Reed-Muller Codes. IEEE Trans. Inform. Theory 36(2), 399–401 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Clark, J., Jacob, J., Maitra, S., Stanica, P.: Almost Boolean Functions: The Design of Boolean Functions by Spectral Inversion. Computational Intelligence 20(3), 450–462 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cusick, T.W., Stanica, P.: Fast Evaluation, Weights and Nonlinearity of Rotation-Symmetric Functions. Discrete Mathematics 258, 289–301 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dalai, D.K., Gupta, K.C., Maitra, S.: Results on Algebraic Immunity for Cryptographically Significant Boolean Functions. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Dalai, D.K., Maitra, S., Sarkar, S.: Results on rotation symmetric Bent functions. In: BFCA 2006. 2nd International Workshop on Boolean Functions: Cryptography and Applications, pp. 137–156 (2006)Google Scholar
  8. 8.
    Filiol, E., Fontaine, C.: Highly nonlinear balanced Boolean Functions with a good Correlation-Immunity. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 475–488. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Fontaine, C.: On Some Cosets of the First-Order Reed-Muller Code With High Minimum Weight. IEEE Trans. Inform. Theory 45(4), 1237–1243 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Harary, F.: Graph Theory. Addison-Wesley Publishing Company, Reading (1972)CrossRefGoogle Scholar
  11. 11.
    Hell, M., Maximov, A., Maitra, S.: On Efficient Implementation of Search Strategy For Rotation Symmetric Boolean Functions. In: ACCT 2004, Black Sea Coast, Bulgaria (2004)Google Scholar
  12. 12.
    Helleseth, T., Mattson Jr., H.F.: On the Cosets of the Simplex Code. Discrete Math. 56, 169–189 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hou, X.-d.: On the Norm and Covering Radius of the First Order Reed-Muller codes. IEEE Trans. Inform. Theory 43(3), 1025–1027 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kavut, S., Maitra, S., Sarkar, S., Yücel, M.D.: Enumeration of 9-variable Rotation Symmetric Boolean Functions having Nonlinearity > 240. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 266–279. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Kavut, S., Maitra, S., Yücel, M.D.: Search for Boolean Functions with Excellent Profiles in the Rotation Symmetric Class. IEEE Trans. Inform. Theory 53(5), 1743–1751 (2007)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kavut, S., Maitra, S., Yücel, M.D.: Autocorrelation Spectra of Balanced Boolean Functions on Odd Number Input Variables With Maximum Absolute Value \(< 2^{\frac{n+1}{2}}\). In: BFCA 2006, University of Rouen, France, pp. 73–86 (2006)Google Scholar
  17. 17.
    Kavut, S., Yücel, M.D.: A New Algorithm for the Design of Strong Boolean Functions. In: First National Cryptology Symposium, METU, Ankara, Turkey, pp. 95–105 (2005)Google Scholar
  18. 18.
    Langevin, P.: On the Orphans and Covering Radius of the Reed-Muller Codes. In: Mattson, H.F., Rao, T.R.N., Mora, T. (eds.) AAECC-9. LNCS, vol. 539, pp. 234–240. Springer, Heidelberg (1991)Google Scholar
  19. 19.
    MacWillams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North Holland, Amsterdam (1977)Google Scholar
  20. 20.
    Maitra, S., Sarkar, S., Dalai, D.K.: On Dihedral Group Invariant Boolean Functions. In: BFCA 2007, University of Rouen, France (2007)Google Scholar
  21. 21.
    Maximov, A.: Classes of Plateaued Rotation Symmetric Boolean functions under Transformation of Walsh Spectra. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 325–334. Springer, Heidelberg (2006)Google Scholar
  22. 22.
    Maximov, A., Hell, M., Maitra, S.: Plateaued Rotation Symmetric Boolean Functions on Odd Number of Variables. In: BFCA 2005, University of Rouen, France (2005)Google Scholar
  23. 23.
    Mykkeltveit, J.J.: The Covering Radius of the (128, 8) Reed-Muller Code is 56. IEEE Trans. Inform. Theory 26(3), 359–362 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Patterson, N.J., Wiedemann, D.H.: The Covering Radius of the (215, 16) Reed-Muller code is At Least 16276. IEEE Trans. Inform. Theory 29(3), 354–356 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Pieprzyk, J., Qu, C.X.: Fast Hashing and Rotation-Symmetric Functions. J. Universal Computer Science 5, 20–31 (1999)MathSciNetGoogle Scholar
  26. 26.
    Roberts, F.S.: Applied Combinatorics. Prentice-Hall, Inc., Englewood Ciffs, New JerseyGoogle Scholar
  27. 27.
    Rothaus, O.S.: On Bent Functions. Journal of Combinatorial Theory, Series A 20, 300–305 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Stanica, P., Maitra, S.: Rotation Symmetric Boolean Functions – Count and Cryptographic Properties. In: R. C. Bose Centenary Symposium on Discrete Mathematics and Applications. Electronic Notes in Discrete Mathematics, vol. 15, Elsevier, Amsterdam (2004)Google Scholar
  29. 29.
    Stanica, P., Maitra, S., Clark, J.: Results on Rotation Symmetric Bent and Correlation Immune Boolean Functions. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 161–177. Springer, Heidelberg (2004)Google Scholar
  30. 30.
    Zhang, X.M., Zheng, Y.: GAC – The Criterion for Global Avalanche Characteristics of Cryptographic Functions. J. Universal Computer Science 1(5), 316–333 (1995)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Selçuk Kavut
    • 1
  • Melek Diker Yücel
    • 1
  1. 1.Department of Electrical Engineering and Institute of Applied Mathematics, Middle East Technical University (METU − ODTÜ), 06531, Ankara, Türkiye 

Personalised recommendations