Advertisement

Distribution of Trace Values and Two-Weight, Self-orthogonal Codes over GF(p,2)

  • N. Pinnawala
  • A. Rao
  • T. A. Gulliver
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)

Abstract

The uniform distribution of the trace map lends itself very well to the construction of binary and non-binary codes from Galois fields and Galois rings. In this paper we study the distribution of the trace map with the argument ax 2 over the Galois field GF(p,2). We then use this distribution to construct two-weight, self-orthogonal, trace codes.

Keywords

Trace map self-orthogonal non-binary two-weight Galois fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pinnawala, N., Rao, A.: Cocyclic Simplex Codes of Type α Over \({{\mathbb Z}}\_4\) and \({{\mathbb Z}}\_{2^s}\). IEEE Trans. Inform. Theory 50(9), 2165–2169 (2004)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Rao, A., Pinnawala, N.: New Linear Codes over Z_p s Via The Trace Map. In: 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, pp. 124–126 (2005)Google Scholar
  3. 3.
    Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of Quantum Key Distribution Using D-Level Systems. Physical Review Letters 88(127902) (2002)Google Scholar
  4. 4.
    Bouyukliev, I., Ostergard, P.R.J.: Classification of Self-Orthogonal Codes. Discrete Math. 19(2), 363–370 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gupta, M.K., Glynn, D.G., Gulliver, T.A.: On Some Quaternary Self Orthogonal Codes. In: Bozta, S., Sphparlinski, I. (eds.) AAECC-14. LNCS, vol. 2227, pp. 112–121. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Harada, M., Ostergard, P.R.J.: Self- Dual and Maximal Self-Orthogonal Codes over f 7. Elsevier Disc. Math. 256, 471–477 (2002)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Wan, Z.X.: A Characteristic Property of Self-Orthogonal Codes and Its Application to Lattices. Bull. Belg. Maths. Soc. 5, 477–482 (1998)zbMATHGoogle Scholar
  8. 8.
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  9. 9.
    Calderbank, A.R., Kantor, W.M.: The Geometry of Two-Weight Codes. Bull. London Maths. Soc. 18, 97–122 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dodunekova, R., Dodunekov, S.M.: Error Detection with a Class of Q-Ary Two-Weight Codes. In: IEEE ISIT 2005, pp. 2232–2235 (2005)Google Scholar
  11. 11.
    Helleseth, T.: Some Two-Weight Codes with Composite Parity-Check Polynomials. IEEE Trans. Inform. Theory 22(5), 631–632 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bierbrauer, J.: Introduction to Coding Theory. Discrete Mathematics and its Applications. Chapman & Hall/CRC, New York (2005)zbMATHGoogle Scholar
  13. 13.
    Chen, Z., Fan, P., Jin, F.: New Results on Self-Orthogonal Unequal Error Protection Codes. IEEE Trans. Inform. Theory 36(5), 1141–1144 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • N. Pinnawala
    • 1
  • A. Rao
    • 1
  • T. A. Gulliver
    • 2
  1. 1.School of Mathematical and Geospatial Sciences, RMIT University, GPO Box 2476V, Melbourne, VIC - 3001Australia
  2. 2.Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 3055, STN CSC, Victoria, B.C., V8W 3P6Canada

Personalised recommendations