Advertisement

Construction of Rotation Symmetric Boolean Functions on Odd Number of Variables with Maximum Algebraic Immunity

  • Sumanta Sarkar
  • Subhamoy Maitra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)

Abstract

In this paper we present a theoretical construction of Rotation Symmetric Boolean Functions (RSBFs) on odd number of variables with maximum possible algebraic immunity (AI) and further these functions are not symmetric. Our RSBFs are of better nonlinearity than the existing theoretical constructions with maximum possible AI. To get very good nonlinearity, which is important for practical cryptographic design, we generalize our construction to a construction cum search technique in the RSBF class. We find 7, 9, 11 variable RSBFs with maximum possible AI having nonlinearities 56, 240, 984 respectively with very small amount of search after our basic construction.

Keywords

Algebraic Immunity Boolean Function Nonlinearity Non-singular Matrix Rotational Symmetry Walsh Spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armknecht, F., Carlet, C., Gaborit, P., Kuenzli, S., Meier, W., Ruatta, O.: Efficient computation of algebraic immunity for algebraic and fast algebraic attacks. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Dalai, D.K., Gupta, K.C., Maitra, S.: Results on Algebraic Immunity for Cryptographically Significant Boolean Functions. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Dalai, D.K., Gupta, K.C., Maitra, S.: Cryptographically Significant Boolean functions: Construction and Analysis in terms of Algebraic Immunity. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 98–111. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Dalai, D.K., Maitra, S.: Reducing the Number of Homogeneous Linear Equations in Finding Annihilators. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.) SETA 2006. LNCS, vol. 4086, pp. 376–390. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Dalai, D.K., Maitra, S., Sarkar, S.: Basic Theory in Construction of Boolean Functions with Maximum Possible Annihilator Immunity. Design, Codes and Cryptography 40(1), 41–58 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kavut, S., Maitra, S., Sarkar, S., Yücel, M.D.: Enumeration of 9-variable Rotation Symmetric Boolean Functions Having Nonlinearity > 240. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 266–279. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Kurosh, A.G.: Theory of Groups. Chelsea Publishing Co., New York (1955)Google Scholar
  9. 9.
    Li, N., Qi, W.F.: Construction and Analysis of Boolean Functions of 2t + 1 Variables With Maximum Algebraic Immunity. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 84–98. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Li, N., Qi, W.F.: Symmetric Boolean functions Depending on an Odd Number of Variables with Maximum Algebraic Immunity. IEEE Trans. Inform. Theory 52(5), 2271–2273 (2006)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Lobanov, M.: Tight Bound Between Nonlinearity and Algebraic Immunity. Cryptology ePrint Archive no. 2005/441 (2005)Google Scholar
  12. 12.
    Stănică, P., Maitra, S.: Rotation Symmetric Boolean Functions – Count and Cryptographic Properties. Discrete Applied mathematics (to be published), http://dx.doi.org/10.1016/j.dam.2007.04.029
  13. 13.
    Qu, L., Li, C., Feng, K.: A Note on Symmetric Boolean Functions with Maximum Algebraic Immunity in Odd Number of Variables. IEEE Trans. Inform. Theory 53(8), 2908–2910 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sumanta Sarkar
    • 1
  • Subhamoy Maitra
    • 1
  1. 1.Applied Statistics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700108India

Personalised recommendations