Advertisement

On the Computation of Non-uniform Input for List Decoding on Bezerra-Garcia Tower

  • M. Prem Laxman Das
  • Kripasindhu Sikdar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)

Abstract

Guruswami and Patthak, among many results, gave a randomized algorithm for computing the evaluation of regular functions of the Garcia-Stichtenoth tower at a large degree place. An algorithm, along the same lines, for Bezerra-Garcia tower is given. This algorithm uses Kummer theorem.

Keywords

Regular Function Dual Basis Irreducible Polynomial Integral Basis Transcendence Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stichtenoth, H.: Algebraic Function Fields and Codes. In: Universitext, Springer, Heidelberg (1993)Google Scholar
  2. 2.
    Garcia, A., Stichtenoth, H.: On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields. Journal of Number Theory 61(2), 248–273 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Guruswami, V., Sudan, M.: Improved Decoding of Reed-Solomon and Algebraic-Feometric Codes. IEEE Trans. Inform. Theory 45(6), 1757–1767 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Guruswami, V., Sudan, M.: On Representations of Algebraic-Geometric Codes. IEEE Trans. on Inform. Theory 47(4), 1610–1613 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Guruswami, V., Patthak, A.: Correlated Algebraic-Geometric Codes: Improved List Decoding Over Bounded Alphabets. Mathematics of Computation (to appear)Google Scholar
  6. 6.
    Shum, K., Aleshnikov, I., Kumar, P.V., Stichtenoth, H., Deolalikar, V.: A Low-Complexity Algorithm for the Construction of Algebraic-Geometric Codes Better Than the GIlbert-VArshamov Bound. IEEE Trans. on Inform. Theory 47(6), 2225–2241 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bezerra, J., Garcia, A.: A Tower with Non-GAlois Steps Which Attains the DRinfeld-VLadut Bound. Journal of Number Theory 106(1), 142–154 (2004)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Prem Laxman Das
    • 1
  • Kripasindhu Sikdar
    • 1
  1. 1.Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, West BengalIndia

Personalised recommendations