Advertisement

Subcodes of Reed-Solomon Codes Suitable for Soft Decoding

  • Safitha J. Raj
  • Andrew Thangaraj
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)

Abstract

Reed-Solomon (RS) codes over GF(2 m ) have traditionally been the most popular non-binary codes in almost all practical applications. The distance properties of RS codes result in excellent performance under hard-decision bounded-distance decoding. In this work, we consider certain subcodes of RS codes over GF(q m ) whose q-ary traces are BCH codes over GF(q). The properties of these subcodes are studied and low-complexity hard-decision and soft-decision decoders are proposed. The decoders are analyzed, and their performance is compared with that of comparable RS codes. Our results suggest that these subcodes of RS codes could have some advantages when compared to RS codes.

Keywords

Linear Code Block Error List Decoder Weight Codeword Soft Decoder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. SIAM 8, 300–304 (1960)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Trans. on Info. Theory 45(6), 1757–1767 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Koetter, R., Vardy, A.: Algebraic Soft-decision Decoding of Reed-Solomon Codes. IEEE Trans. Inform. Theory 49(11), 2809–2825 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Forney, D.: Generalized Minimum Distance Decoding. IEEE Trans. Inform. Theory 12(2), 125–131 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Vardy, A., Beery, Y.: Bit-level Soft-decision Decoding of Reed-Solomon Codes. IEEE Trans. on Comm. 39(3), 440–444 (1991)zbMATHCrossRefGoogle Scholar
  6. 6.
    Ponnampalam, V., Vucetic, B.: Soft Decision Decoding of Reed-Solomon Codes. IEEE Trans. on Comm. 50(11), 1758–1768 (2002)CrossRefGoogle Scholar
  7. 7.
    Jiang, J., Narayanan, K.R.: Iterative Soft Decoding of Reed-Solomon Codes. IEEE Commun. Lett. 8(4), 244–246 (2004)CrossRefGoogle Scholar
  8. 8.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, The Netherlands, Amsterdam (1977)zbMATHGoogle Scholar
  9. 9.
    Augot, D., Charpin, P., Sendrier, N.: Studying the Locator Polynomials of Minimum Weight Codewords of BCH Codes. IEEE Trans. Inform. Theory 38(3), 960–973 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ashikhmin, A., Litsyn, S.: Simple MAP Decoding of First-Order Reed-Muller and Hamming Codes. IEEE Trans. Inform. Theory 50(8), 1812–1818 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Safitha J. Raj
    • 1
  • Andrew Thangaraj
    • 1
  1. 1.Department of Electrical Engineering, Indian Institute of Technology Madras, ChennaiIndia

Personalised recommendations