Advertisement

On the Structure of Inversive Pseudorandom Number Generators

  • Harald Niederreiter
  • Arne Winterhof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)

Abstract

We analyze the lattice structure and linear complexity of a new inversive pseudorandom number generator recently introduced by Niederreiter and Rivat. In particular, we introduce a new lattice test which is much stronger than its predecessors and prove that this new generator passes it up to very high dimensions. Such a result cannot be obtained for the conventional inversive generator with currently known methods. We also analyze the behavior of two explicit inversive generators under this new test and present lower bounds on the linear complexity profile of binary sequences derived from these three inversive generators.

Keywords

Binary Sequence Linear Complexity Lattice Test Pseudorandom Number Generator Pseudorandom Binary Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brandstätter, N., Winterhof, A.: Linear Complexity Profile of Binary Sequences With Small Correlation Measure. Period. Math. Hungar 52, 1–8 (2006)CrossRefGoogle Scholar
  2. 2.
    Chen, Z.X.: Finite Binary Sequences Constructed by Explicit Inversive Methods. Finite Fields Appl. (to appear)Google Scholar
  3. 3.
    Chou, W.S.: The Period Lengths of Inversive Pseudorandom Vector Generations. Finite Fields Appl. 1, 126–132 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dorfer, G.: Lattice Profile and Linear Complexity Profile of Pseudorandom Number Sequences. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Finite Fields and Applications. LNCS, vol. 2948, pp. 69–78. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Dorfer, G., Meidl, W., Winterhof, A.: Counting Functions and Expected Values for the Lattice Profile at n. Finite Fields Appl. 10, 636–652 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dorfer, G., Winterhof, A.: Lattice Structure and Linear Complexity Profile of Nonlinear Pseudorandom Number Generators. Appl. Algebra Engrg. Comm. Comput. 13, 499–508 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dorfer, G., Winterhof, A.: Lattice Structure of Nonlinear Pseudorandom Number Generators in Parts of the Period. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 199–211. Springer, Berlin (2004)Google Scholar
  8. 8.
    Eichenauer, J., Lehn, J.: A Non-Linear Congruential Pseudo Random Number Generator. Statist. Papers 27, 315–326 (1986)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Eichenauer-Herrmann, J.: Statistical Independence of a New Class of Inversive Congruential Pseudorandom Numbers. Math. Comp. 60, 375–384 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Eichenauer-Herrmann, J., Herrmann, E., Wegenkittl, S.: A Survey of Quadratic and Inversive Congruential Pseudorandom Numbers. In: Niederreiter, H., et al. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, vol. 127, pp. 66–97. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Fu, F.-W., Niederreiter, H.: On the Counting Function of the Lattice Profile of Periodic Sequences. J. Complexity (to appear)Google Scholar
  12. 12.
    Gutierrez, J., Shparlinski, I.E., Winterhof, A.: On the Linear and Nonlinear Complexity Profile of Nonlinear Pseudorandom Number Generators. IEEE Trans. Inf. Theory 49, 60–64 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Marsaglia, G.: The Structure of Linear Congruential Sequences. In: Zaremba, S.K. (ed.) Applications of Number Theory to Numerical Analysis, pp. 249–285. Academic Press, New York (1972)Google Scholar
  14. 14.
    Mauduit, C., Sárközy, A.: On Finite Pseudorandom Binary Sequences. I. Measure of Pseudorandomness. The Legendre Symbol. Acta Arith. 82, 365–377 (1997)zbMATHGoogle Scholar
  15. 15.
    Mauduit, C., Sárközy, A.: Construction of Pseudorandom Binary Sequences by Using the Multiplicative Inverse. Acta Math. Hungar. 108, 239–252 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Meidl, W., Winterhof, A.: On the Linear Complexity Profile of Explicit Nonlinear Pseudorandom Numbers. Inf. Process. Lett. 85, 13–18 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Meidl, W., Winterhof, A.: On the Linear Complexity Profile of Some New Explicit Inversive Pseudorandom Numbers. J. Complexity 20, 350–355 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Niederreiter, H.: Pseudorandom Vector Generation by the Inversive Method. ACM Trans. Modeling and Computer Simulation 4, 191–212 (1994)zbMATHCrossRefGoogle Scholar
  19. 19.
    Niederreiter, H., Rivat, J.: On the Correlation of Pseudorandom Numbers Generated by Inversive Methods. Monatsh. Math. (to appear)Google Scholar
  20. 20.
    Niederreiter, H., Shparlinski, I.E.: On the Distribution of Pseudorandom Numbers and Vectors Generated by Inversive Methods. Appl. Algebra Engrg. Comm. Comput. 10, 189–202 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Niederreiter, H., Shparlinski, I.E.: Recent Advances in the Theory of Nonlinear Pseudorandom Number Generators. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 86–102. Springer, Berlin (2002)Google Scholar
  22. 22.
    Niederreiter, H., Winterhof, A.: Lattice Structure and Linear Complexity of Nonlinear Pseudorandom Numbers. Appl. Algebra Engrg. Comm. Comput. 13, 319–326 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Topuzoğlu, A., Winterhof, A.: Pseudorandom Sequences. In: Garcia, A., Stichtenoth, H. (eds.) Topics in Geometry, Coding Theory and Cryptography, pp. 135–166. Springer, Dordrecht (2007)Google Scholar
  24. 24.
    Wang, L.-P., Niederreiter, H.: Successive Minima Profile, Lattice Profile, and Joint Linear Complexity Profile of Pseudorandom Multisequences. J. Complexity (to appear)Google Scholar
  25. 25.
    Winterhof, A.: On the Distribution of Some New Explicit Inversive Pseudorandom Numbers and Vectors. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 487–499. Springer, Berlin (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Harald Niederreiter
    • 1
  • Arne Winterhof
    • 2
  1. 1.Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543Republic of Singapore
  2. 2.Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstr. 69, 4040 LinzAustria

Personalised recommendations