Advertisement

Abstract

Given a linear code \({\mathcal C}\), the fundamental problem of trellis decoding is to find a coordinate permutation of \({\mathcal C}\) that yields a code \({\mathcal C}'\) whose minimal trellis has the least state-complexity among all codes obtainable by permuting the coordinates of \({\mathcal C}\). By reducing from the problem of computing the pathwidth of a graph, we show that the problem of finding such a coordinate permutation is NP-hard, thus settling a long-standing conjecture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of Finding Embeddings in a K-Tree. SIAM J. Alg. Disc. Math 8, 277–284 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L.: A Tourist Guide Through Treewidth. Acta Cybernetica 11, 1–23 (1993)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Forney Jr., G.D.: Dimension/Length Profiles and Trellis Complexity of Linear Block Codes. IEEE Trans. Inform. Theory 40(6), 1741–1752 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Forney Jr., G.D.: Codes on Graphs: Constraint Complexity of Cycle-Free Realizations of Linear Codes. IEEE Trans. Inform. Theory 49(7), 1597–1610 (2003)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Horn, G.B., Kschischang, F.R: On The Intractability of Permuting a Block Code to Minimize Trellis Complexity. IEEE Trans. Inform. Theory 42(6), 2042–2048 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jain, K., Măndoiu, I., Vazirani, V.V.: The “Art of Trellis Decoding” is Computationally Hard — for Large Fields. IEEE. Trans. Inform. Theory 44(3), 1211–1214 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kashyap, N.: Matroid Pathwidth and Code Trellis Complexity. SIAM J. Discrete Math. ArXiv e-print 0705.1384 (to appear)Google Scholar
  8. 8.
    Massey, J.L.: Foundation and Methods of Channel Encoding. In: 1978 Int. Conf. Inform. Theory and Systems, vol. 65, NTG-Fachberichte, Berlin, Germany (1978)Google Scholar
  9. 9.
    Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford, UK (1992)zbMATHGoogle Scholar
  10. 10.
    Robertson, N., Seymour, P.D.: Graph Minors. I. Excluding a Forest. J. Combin. Theory, Ser. B 35, 39–61 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Vardy, A.: Trellis Structure of Codes. In: Brualdi, R., Huffman, C., Pless, V. (eds.) Handbook of Coding Theory, Elsevier, Amsterdam, The Netherlands (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Navin Kashyap
    • 1
  1. 1.Dept. Mathematics and Statistics, Queen’s University, Kingston, ON, K7L 3N6Canada

Personalised recommendations