Advertisement

Joint Source-Cryptographic-Channel Coding Based on Linear Block Codes

  • Haruhiko Kaneko
  • Eiji Fujiwara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)

Abstract

This paper proposes a joint coding with three functions: source coding, channel coding, and public-key encryption. A codeword is simply generated as a product of an encoding matrix and a sparse information word. This encoding method has much lower encoding complexity than the conventional coding techniques in which source coding, encryption, and channel coding are successively applied to an information word. The encoding matrix is generated by using two linear error control codes and randomly generated nonsingular matrices. Encryption is based on the intractableness of factorizing a matrix into randomly constructed factor matrices, and of decoding an error control code defined by a random parity-check matrix. Evaluation shows that the proposed joint coding gives a lower bit error rate and a superior compression ratio than the conventional codings.

Keywords

LDPC Code Channel Code Unequal Error Protection Error Control Code Goppa Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huffman, D.A.: A Method for the Construction of Minimum Redundancy Codes. Proc. of the IRE 40(9), 1098–1101 (1952)CrossRefGoogle Scholar
  2. 2.
    Ziv, J., Lempel, A.: A Universal Algorithm for Sequential Data Compression. IEEE Trans. Inform. Theory 23(3), 337–343 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Wallace, G.K.: The JPEG Still Picture Compression Standard. Communications of the ACM 34(4), 30–44 (1991)CrossRefGoogle Scholar
  4. 4.
    Wieqand, T., Sullivan, G.J., Bjntegaard, G., Luthra, A.: Overview of the H.264/AVC Video Coding Standard. IEEE Trans. Circuits and Systems for Video Technology 13(7), 560–576 (2003)CrossRefGoogle Scholar
  5. 5.
    Fujiwara, E.: Code Design for Dependable Systems: Theory and Practical Applications. Wiley, Chichester (2006)zbMATHGoogle Scholar
  6. 6.
    MacKay, D.J.C.: Good Error-Correcting Codes Based on Very Sparse Matrices. IEEE Trans. Inform. Theory 45(2), 399–431 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L.: Design of Capacity-Approaching Irregular Low-Density Parity-Check Codes. IEEE Trans. Inform. Theory 47(2), 619–637 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fujiwara, E., Kitakami, M.: Unequal Error Protection in Ziv-Lempel Coding. IEICE Trans. Inform. and Systems E86-D E86-D(12), 2595–2600 (2003)Google Scholar
  9. 9.
    Horn, U., Stuhlmüller, K., Ling, M., Girod, B.: Robust Internet Video Transmission Based on Scalable Coding and Unequal Error Protection. Signal Processing: Image Communication 15(1-2), 77–94 (1999)CrossRefGoogle Scholar
  10. 10.
    Zhong, W., Garcia-Frias, J.: LDGM Codes dor Channel Coding and Joint Source-Channel Coding of Correlated Sources. EURASIP J. Applied Signal Processing 2005(6), 942–953 (2005)zbMATHCrossRefGoogle Scholar
  11. 11.
    McEliece, R.J.: A Public-Key Cryptosystem Based on Algebraic Coding Theory. The Deep Space Network Progress Report, DSN PR, 42–44, 114–116 (1978)Google Scholar
  12. 12.
    Kabashima, Y., Murayama, T., Saad, D.: Cryptographical Properties of Ising Spin Systems. Physical Review Letters 84(9), 2030–2033 (2000)CrossRefGoogle Scholar
  13. 13.
    Kobara, K., Imai, H.: Semantically Secure McEliece Public-Key Cryptosystem. IEICE Trans. Fundamentals 85(1), 74–83 (2002)Google Scholar
  14. 14.
    Niederreiter, H.: Knapsack-Type Cryptosystems and Algebraic Coding Theory. Problems of Control and Information Theory 15(2), 157–166 (1986)MathSciNetGoogle Scholar
  15. 15.
    Li, Y.X., Deng, R.H., Wang, X.M.: On the Equivalence of McEliece’s and Niederreiter’s Public-Key Cryptosystems. IEEE Trans. Inform, Theory 40(1), 271–273 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fujiwara, E., Namba, K., Kitakami, M.: Parallel Decoding for Burst Error Control Codes. Electronics and Communications in Japan, Part. III 87(1), 38–48 (2004)CrossRefGoogle Scholar
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Haruhiko Kaneko
    • 1
  • Eiji Fujiwara
    • 1
  1. 1.Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552Japan

Personalised recommendations