Advertisement

A Note on a Class of Quadratic Permutations over \({\mathbb F}_{{2^n}}\)

  • Yann Laigle-Chapuy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)

Abstract

Finding new classes of permutation polynomials is a challenging problem. Blockhuis at al. investigated the permutation behavior of polynomials of the form \(\sum_{i=0}^{n-1}a_iX^{2^i+1}\) over \({\mathbb F}_{{2^n}}\). In this paper, we extend their results and propose as a new conjecture that if n = 2 e then X 2 is the only unitary permutation polynomial of this type.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lidl, R., Mullen, G.: When does a Polynomial over a Finite Field Permute the Elements of the Field? Amer. Math. Monthly 100, 71–74 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997)Google Scholar
  3. 3.
    Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Dobbertin, H.: Almost Perfect Nonlinear Power Functions on GF(2N): The Niho Case. Inf. Comput. 151(1-2), 57–72 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Budaghyan, L., Carlet, C., Leander, G.: A Class of Quadratic APN Binomials Inequivalent to Power Functions. Cryptology ePrint Archive, Report 2006/445 (2006), http://eprint.iacr.org/
  6. 6.
    Blokhuis, A., Coulter, R.S., Henderson, M., O’Keefe, C.M.: Permutations Amongst the Dembowski-Ostrom Polynomials. In: 1999 Finite Fields and Applications, pp. 37–42. Springer, Berlin (2001)Google Scholar
  7. 7.
    Payne, S.: A Complete Determination of Translation Ovoids in Finite Desarguian Planes. Lincei - Rend. Sc. fis. mat. e nat. (1971)Google Scholar
  8. 8.
    Berger, T., Canteaut, A., Charpin, P., Laigle-Chapuy, Y.: Almost Perfect Nonlinear Functions. Technical Report RR-5774, INRIA Rocquencourt (2005), http://www.inria.fr/rrrt/rr-5774.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yann Laigle-Chapuy
    • 1
  1. 1.INRIA, Domaine de Voluceau, BP 105, 78153 Rocquencourt, Le Chesnay CedexFrance

Personalised recommendations