Fault-Tolerant Finite Field Computation in the Public Key Cryptosystems

  • Silvana Medoš
  • Serdar Boztaş
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)


In this paper, we propose a new method for fault tolerant computation over GF(2 k ) for use in public key cryptosystems. In particular, we are concerned with the active side channel attacks, i.e., fault attacks. We define a larger ring in which new computation is performed with encoded elements while arithmetic structure is preserved. Computation is decomposed into parallel, mutually independent, identical channels, so that fault effects do not spread to the other channels. By assuming certain fault models, our proposed model provides protection against their error propagation. Also, we provide an analysis of the error detection and correction capabilities of our proposed model.


Fault Model Distinct Element Transient Fault Residue Number System Fault Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bao, F., Deng, R.H., Han, Y., Jeng, A.B., Narasimhalu, A.D., Ngair, T-H.: Breaking Public Key Cryptosystems on Tamper Resistant Devices in the Presence of Transient Faults. In: Christianson, B., Lomas, M. (eds.) Security Protocols. LNCS, vol. 1361, pp. 115–124. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Beckmann, P.E., Musicus, B.R.: Fast Fault-Tolerant Digital Convolution Using a Polynomial Residue Number System. IEEE Trans. Signal Processing 41(7), 2300–2313 (1993)zbMATHCrossRefGoogle Scholar
  3. 3.
    Boneh, D., DeMilo, R.A., Lipton, R.J.: On the Importance of Eliminating Errors in Cryotographic Computations. J. Cryptology 14, 101–119 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, UK (1999)zbMATHGoogle Scholar
  5. 5.
    Gaubatz, G., Sunar, B.: Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography. In: 2005 Workshop on Fault Diagnosis and Tolerance in Cryptography, Edinburgh, Scotland (2005)Google Scholar
  6. 6.
    Imbert, L., Dimitrov, L.S., Jullien, G.A.: Fault-Tolerant Computation Over Replicated Finite Rings. IEEE Trans. Circuits Systems-I: Fundamental Theory and Applications 50(7), 858–864 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, London (1986)zbMATHGoogle Scholar
  9. 9.
    Otto, M.: Fault Attacks and Countermeasures. PhD Thesis (2004)Google Scholar
  10. 10.
    Reed, I.S., Solomon, G.: Polynomial Codes over Certain Finite Fields. J. Society for Industrial and Applied Mathematics 8(2), 300–304 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Reyhani-Masoleh, A., Hasan, M.A.: Towards Fault-Tolerant Cryptographic Computations over Finite Fields. ACM Trans. Embedded Computing Systems 3(3), 593–613 (2004)CrossRefGoogle Scholar
  12. 12.
    Welch, L., Berlekamp, E.R.: Error Corrections for Algebraic Block Codes. U.S. Patent 4 633 470 (1983)Google Scholar
  13. 13.
    Wicker, S.B., Bhargava, V.K.: Reed-Solomon Codes and Their Applications. IEEE Press, New York (1994)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Silvana Medoš
    • 1
  • Serdar Boztaş
    • 1
  1. 1.School of Mathematical and Geospatial Sciences, RMIT University, GPO Box 2476V, Melbourne 3001Australia

Personalised recommendations