Advertisement

An Improvement of Tardos’s Collusion-Secure Fingerprinting Codes with Very Short Lengths

  • Koji Nuida
  • Satoshi Fujitsu
  • Manabu Hagiwara
  • Takashi Kitagawa
  • Hajime Watanabe
  • Kazuto Ogawa
  • Hideki Imai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)

Abstract

The code length of Tardos’s collusion-secure fingerprinting code (STOC’03) is of theoretically minimal order with respect to the number of malicious users (pirates); however, the constant factor should be further reduced for practical implementation. In this paper we give a collusion-secure fingerprinting code by mixing recent two improvements of Tardos code and modifying their pirates tracing algorithms. Our code length is significantly shorter than Tardos code, especially in the case of fewer pirates. For example, the ratio of our length relative to Tardos code in some practical situation with 4 pirates is 4.33%; while the lowest among the preceding codes in this case (S̆korić et al., 2007) is 9.87%.

Keywords

Code Length Minimal Order Malicious User Content Server Bias Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boneh, D., Shaw, J.: Collusion-secure Fingerprinting for Digital Data. IEEE Trans. Inform. Theory 44, 1897–1905 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Hagiwara, M., Hanaoka, G., Imai, H.: A Short Random Fingerprinting Code Against a Small Number of Pirates. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 193–202. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Isogai, T., Muratani, H.: Reevaluation of Tardos’s Code. In: IEICE Technical Report, ISEC2006-96, pp. 7–12 (2006)Google Scholar
  4. 4.
    Carter, M., van Brunt, B.: The Lebesgue-Stieltjes Integral: A Practical Introduction. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  5. 5.
    Katzenbeisser, S., S̆korić, B., Celik, M.U., Sadeghi, A.-R.: Combining Tardos Fingerprinting Codes and Fingercasting. In: IH 2007. LNCS, vol. 4567, Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimal Probabilistic Fingerprinting Codes Using Optimal Finite Random Variables Related to Numerical Quadrature, http://www.arxiv.org/abs/cs/0610036
  7. 7.
    Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimization of Tardos’s Fingerprinting Codes in a Viewpoint of Memory Amount. In: IH 2007. LNCS, vol. 4567, Springer, Heidelberg (2007)Google Scholar
  8. 8.
    S̆korić, B., Katzenbeisser, S., Celik, M.U.: Symmetric Tardos Fingerprinting Codes for Arbitrary Alphabet Sizes, http://eprint.iacr.org/2007/041
  9. 9.
    Tardos, G.: Optimal Probabilistic Fingerprint Codes. J. ACM. In: 2003 ACM Symposium on Theory of Computing, pp. 116–125 (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Koji Nuida
    • 1
  • Satoshi Fujitsu
    • 2
  • Manabu Hagiwara
    • 1
  • Takashi Kitagawa
    • 1
  • Hajime Watanabe
    • 1
  • Kazuto Ogawa
    • 2
  • Hideki Imai
    • 1
    • 3
  1. 1.Research Center for Information Security (RCIS), National Institute of Advanced Industrial Science and Technology (AIST); Akihabara-Daibiru Room 1102, 1-18-13 Sotokanda, Chiyoda-ku, Tokyo 101-0021Japan
  2. 2.Science & Technical Research Laboratories, Japan Broadcasting Corporation (NHK); 1-10-11 Kinuta, Setagaya-ku, Tokyo 157-8510Japan
  3. 3.Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551Japan

Personalised recommendations