Determining the Nonlinearity of a New Family of APN Functions

  • Carl Bracken
  • Eimear Byrne
  • Nadya Markin
  • Gary McGuire
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4851)


We compute the Walsh spectrum and hence the nonlinearity of a new family of quadratic multi-term APN functions. We show that the distribution of values in the Walsh spectrum of these functions is the same as the Gold function.


Almost perfect nonlinear APN almost bent AB nonlinearity Walsh transform Walsh spectrum discrete binary Fourier transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bracken, C., Byrne, E., Markin, N., McGuire, G.: New Families of Quadratic Almost Perfect Nonlinear Trinomials and Multinomials (preprint, 2007)Google Scholar
  2. 2.
    Budaghyan, L., Carlet, C., Felke, P., Leander, G.: An Infinite Class of Quadratic APN Functions Which Are Not Equivalent to Power Mappings. In: 2006 IEEE Internation Symposium on Information Theory, IEEE Press, New York (2006)Google Scholar
  3. 3.
    Budaghyan, L., Carlet, C., Leander, G.: A Class of Quadratic APN Binomials Inequivalent to Power Functions (preprint, 2007)Google Scholar
  4. 4.
    Carlet, C.: Vectorial Boolean Functions for Cryptography. In: Hammer, P., Crama, Y. (eds.) Boolean methods and models, Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Canteaut, A., Charpin, P., Dobbertin, H.: Weight Divisibility of Cyclic Codes, Highly Nonlinear Functions on GF(2m) and Crosscorrelation of Maximum-Length Sequences. SIAM J. Discrete Mathematics 13(1), 105–138 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Carlet, C., Charpin, P., Zinoviev, V.: Codes, Bent Functions and Permutations Suitable for Des-Like Cryptosystems. Designs, Codes and Cryptography 15(2), 125–156 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chabaud, F., Vaudenay, S.: Links Between Differential and Linear Cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Dobbertin, H.: Another Proof of Kasami’s Theorem. Designs, Codes and Cryptography 17, 177–180 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dillon, J.: Polynomials over Finite Fields and Applications. Slides from talk given at Banff International Research Station (2006)Google Scholar
  10. 10.
    Edel, Y., Kyureghyan, G., Pott, A.: A New APN Function Which is not Equivalent to a Power Mapping. IEEE Trans. Inform. Theory 52(2), 744–747 (2006)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Carl Bracken
    • 1
  • Eimear Byrne
    • 1
  • Nadya Markin
    • 1
  • Gary McGuire
    • 1
  1. 1.School of Mathematical Sciences, University College DublinIreland

Personalised recommendations