Advertisement

Old and New Problems and Results in Ramsey Theory

  • Ron Graham
Chapter
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 17)

Abstract

In this note, I will describe a variety of problems from Ramsey theory on which I would like to see progress made. I will also discuss several recent results which do indeed make progress on some of these problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Alexeev, J. Fox and R. L. Graham, On minimal colorings without monochromatic solutions to a linear equation, (2006) (preprint), 15 pp.Google Scholar
  2. [2]
    N. Alon and J. Spencer, The Probabilistic Method, Second Edition, Wiley-Inter-science, John Wiley & Sons, New York (2000). xviii+301 pp.zbMATHGoogle Scholar
  3. [3]
    E. R. Berlekamp, A construction for partitions which avoid long arithmetic progressions, Canad. Math. Bull., 11 (1968), 409–414.zbMATHMathSciNetGoogle Scholar
  4. [4]
    P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer, New York (2005). xii+499 pp.zbMATHGoogle Scholar
  5. [5]
    F. Chung and R. Graham, Erdős on Graphs: His Legacy of Unsolved Problems, A K Peters, Ltd., Wellesley, MA (1998). xiv+142 pp.Google Scholar
  6. [6]
    F. R. K. Chung and R. L. Graham, Forced convex n-gons in the plane, Discrete Comput. Geom., 19 (1998), 367–371.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    D. Conlon, New upper bounds for some Ramsey numbers (2006), http://arxiv.org/abs/math/0607788.Google Scholar
  8. [8]
    E. Croot, On a coloring conjecture about unit fractions, Ann. of Math. (2), 157 (2003), 545–556.zbMATHMathSciNetGoogle Scholar
  9. [9]
    P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc., 53 (1947), 292–294.CrossRefMathSciNetGoogle Scholar
  10. [10]
    P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monographies de L’Enseignement Mathématique, 28, Universitéde Genève, Geneva (1980) 128 pp.Google Scholar
  11. [11]
    P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer and E. G. Straus, Euclidean Ramsey Theorems. I, J. Combin. Theory Ser. A, 14 (1973), 341–363.CrossRefGoogle Scholar
  12. [12]
    P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer and E. G. Straus, Euclidean Ramsey Theorems. II, Infinite and finite sets (Colloq., Keszthely, 1973, Vol. I, pp. 529–557. Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam (1975).Google Scholar
  13. [13]
    P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer and E. G. Straus, Euclidean Ramsey Theorems. III, Infinite and finite sets (Colloq., Keszthely, 1973, Vol. I, pp. 559–583. Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam (1975).Google Scholar
  14. [14]
    P. Erdős and G. Szekeres, A combinatorial problem in geometry, Composito Math., 2 (1935), 464–470.Google Scholar
  15. [15]
    P. Erdős and G. Szekeres, On some extremum problems in elementary geometry. Ann. Univ. Sci. Budapest. Eőtvös Sect. Math., 3–4 (1960–1961), 53–62.Google Scholar
  16. [16]
    P. Erdős and P. Turán, On some sequences of integers, J. London Math. Soc., 11 (1936), 261–264.CrossRefGoogle Scholar
  17. [17]
    J. Fox and D. Kleitman, On Rado’s boundedness conjecture, J. Combin. Theory, Ser. A, 113 (2006), 84–100.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    J. Fox and R. Radoičić, The axiom of choice and the degree of regularity of equations over the reals (2005) (preprint).Google Scholar
  19. [19]
    H. Fürstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math., 34 (1979), 275–291.CrossRefGoogle Scholar
  20. [20]
    T. Gerken, On empty convex hexagons in planar point sets (2006) (submitted).Google Scholar
  21. [21]
    W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Fund. Anal., 11 (2001), 465–588.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    W. T. Gowers, Some unsolved problems in additive/combinatorial number theory, (on Gowers Website at www.dpmms.cam.ac.uk/~wtg10/papers.html)Google Scholar
  23. [23]
    R. L. Graham, Rudiments of Ramsey Theory, CBMS Regional Conference Series in Mathematics, 45. American Mathematical Society, Providence, R.I., (1981). v+65pp.zbMATHGoogle Scholar
  24. [24]
    R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey Theory, Second edition, John Wiley & Sons, Inc., New York (1990). xii+196 pp.zbMATHGoogle Scholar
  25. [25]
    R. L. Graham and J. Nešetřil, Ramsey Theory and Paul Erdős (recent results from a historical perspective), Paul Erdős and his mathematics, II (Budapest, 1999), 339–365, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest (2002)Google Scholar
  26. [26]
    A. W. Hales and R. I Jewett, Regularity and positional games, Trans. Amer. Math. Soc., 106 (1963), 222–229.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    D. Hilbert, Uber die Irreducibilität Ganzer Rationaler Functionen mit Ganzzahligen, J. Reine Angew. Math., 110 (1892), 104–129.Google Scholar
  28. [28]
    A. Hippler, Dissertation for “Doktor der Naturwissenshaften am Fachbereich Mathematik” der Johannes Gutenberg-Univertität in Mainz, (2002), 103 pp.Google Scholar
  29. [29]
    J. D. Horton, Sets with no empty convex 7-gons, Canadian Math. Bull., 26 (1983), 482–484.zbMATHMathSciNetGoogle Scholar
  30. [30]
    V. Jelínek, J. Kynčl, R. Stolař and T. Valla, Monochromatic triangles in two-colored plane (2006) (preprint), 25 pp.Google Scholar
  31. [31]
    B. Landman and A. Robertson, Ramsey Theory on the Integers, Student Mathematical Library, 24. American Mathematical Society, Providence, RI (2004), xvi+317.Google Scholar
  32. [32]
    W. Morris and V. Soltan, The Erdšs-Szekeres problem on points in convex position-a survey, Bull. Amer. Math. Soc., 37 (2000), 437–458.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    P. O’Donnell, Arbitrary girth, 4-chromatic unit distance graphs in the plane. I. Graph embedding, Geombinatorics, 9 (2000), 180–193.zbMATHMathSciNetGoogle Scholar
  34. [34]
    P. O’Donnell, Arbitrary girth, 4-chromatic unit distance graphs in the plane. II. Graph description, Geombinatorics, 9 (2000), 145–152.zbMATHMathSciNetGoogle Scholar
  35. [35]
    R. Rado, Studien zur Kombinatorik, Math. Zeit., 36 (1933), 242–280.CrossRefMathSciNetGoogle Scholar
  36. [36]
    R. Rado, Verallgemeinerung Eines Satzes von van der Waerden mit Anwendungen auf ein Problem der Zahlentheorie, Sonderausg. Sitzungsber. Preuss. Akad. Wiss. Phys-Math. Klasse, 17 (1933), 1–10.MathSciNetGoogle Scholar
  37. [37]
    F. P. Ramsey, On a problem in formal logic, Proc. London Math. Soc., 30 (1930), 264–286.CrossRefGoogle Scholar
  38. [38]
    V. Ršdl, (personal communication).Google Scholar
  39. [39]
    K. F. Roth, On certain sets of integers, J. London Math. Soc., 28 (1953), 104–109.zbMATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    I. Schur, Uber die Kongruenz x m + y m = z m (mod p), Jber. Deutsch. Math.-Verein., 25, (1916), 114–117.Google Scholar
  41. [41]
    S. Shelah, Primitive recursive bounds for van der Waerden numbers, J. Amer. Math. Soc., 1 (1988), 683–697.zbMATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    S. Shelah and A. Soifer, Axiom of choice and chromatic number of the plane, J. Combin. Theory Ser. A, 103 (2003), 387–391.zbMATHCrossRefMathSciNetGoogle Scholar
  43. [43]
    S. Shelah and A. Soifer, Axiom of choice and chromatic number: examples on the plane, J. Combin. Theory Ser. A, 105 (2004), 359–364.zbMATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    A. Soifer, Chromatic number of the plane: its past and future. Proceedings of the Thirty-Fourth Southeastern International Conference on Combinatorics, Graph Theory and Computing, Congr. Numer., 160, (2003), 69–82.zbMATHMathSciNetGoogle Scholar
  45. [45]
    J. H. Spencer, Ramsey’s theorem-a new lower bound, J. Comb. Th. (A) 18 (1975), 108–115.zbMATHCrossRefGoogle Scholar
  46. [46]
    E. G. Straus, A combinatorial theorem in group theory, Math. Computation 29 (1975), 303–309.zbMATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    G. Szekeres and L. Peters, Computer solution to the 17 point Erdős-Szekeres problem, (2006) (preprint), 14 pp.Google Scholar
  48. [48]
    E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith., 27 (1975), 199–245.zbMATHMathSciNetGoogle Scholar
  49. [49]
    A. Thomason, An upper bound for some Ramsey numbers, J. Graph Theory, 12 (1988), 509–517.zbMATHCrossRefMathSciNetGoogle Scholar
  50. [50]
    G. Tóth and P. Valtr, Note on the Erdšs-Szekeres theorem, Discrete Comput. Geom., 19 (1998), 457–459.zbMATHCrossRefMathSciNetGoogle Scholar
  51. [51]
    G. Tóth and P. Valtr, The Erdšs-Szekeres theorem: upper bounds and related results, Combinatorial and computational geometry, 557–568, Math. Sci. Res. Inst. Publ., 52, Cambridge Univ. Press, Cambridge (2005).Google Scholar
  52. [52]
    P. Valtr, On the empty hexagon theorem (2006) (preprint), 9 pp.Google Scholar
  53. [53]
    B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskunde, 15 (1927), 212–216.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2008

Authors and Affiliations

  • Ron Graham
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of CaliforniaSan Diego

Personalised recommendations