Skip to main content

Statistical Inference on Random Structures

  • Chapter
Horizons of Combinatorics

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 17))

Abstract

Randomness for a statistician must have some structure. In traditional combinatorics the word random means uniform distribution on a set which may be the set of all graphs with n vertices, the set of all permutations of the numbers N = (1,2,..., n), the set of all partitions of N, or any other set of simple structure. In practice the statistician meets a subset of the structures and she or he is interested in the question, what was the mechanism which generated the sample. Uniform distribution and independence are shapeless and they have low complexity for catching the character of samples produced by real life situations. In [12] Persi Diaconis investigated a sample consisting of the votes in an election of the American Psychological Association. The sample was investigated by others but without achieving a reasonable goodness of fit, because the present collection of distribution of permutations is not large enough. Investigating the sample we found a hidden property leading to a new class of distributions of permutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509–512.

    Article  MathSciNet  Google Scholar 

  2. O. Barndorff-Nielsen, Information and Exponential families in statistical theory, Chichester (Wiley, 1978).

    Google Scholar 

  3. M. Bolla, Distribution of the eigenvalues of random block-matrices, Linear Algebra and its Applications, 377 (2004), 219–240.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Bolla, Recognizing linear structure in noisy matrices, Linear Algebra and its Applications, 402 (2005), 228–240.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Bolla and G. Tusnády, Spectra and optimal partitions of weighted graphs, Discrete Mathematics, 128 (1994), 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Bollobás, O. Riordan, J. Spencer and G. Tusnády, The degree sequence of a scale-free random graph, Random Structures Algorithms, 18 (2001), 279–290.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Borgs, J. Chayes, L. Lovász, V. T. Sós, B. Szegedy and K. Vesztergombi, Counting graph homomorphisms, in: Topics in Discrete Mathematics (eds. M. Klazar, J. Kratochvil, M. Loebl, J. Matousek, R. Thomas, P. Valtr), 315–371 (Springer, 2006).

    Google Scholar 

  8. C. Borgs, J. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi, Graph limits and parameter testing, STOC (2006).

    Google Scholar 

  9. C. Borgs, J. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi, Convergent sequences of dense graphs I: subgraph frequencies, metric properties and testing, arXiv:math.CO/0702004vl 31Jan2007.

    Google Scholar 

  10. .F. Chung, Spectral graph theory, revised (2006).

    Google Scholar 

  11. A. Davis, B. B. Gardner and M. R. Gardner, Deep south: a social anthropological study of caste and class, University of Chicago Press (1941).

    Google Scholar 

  12. P. Diaconis, A generalization of spectral analysis with applications to ranked data, The 1987 Wald memorial lectures, The Annals of Statistics, 17 (1989), 949–979.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Finesso and P. Spreij, Nonnegative matrix factorization and I-divergence alternating minimization, Linear Algebra and its Applications, 416 (2006), 270–287.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Frieze and R. Kannan, Quick approximation to matrices and applications, manuscript (2006).

    Google Scholar 

  15. J. Gupta and P. Damien, Conjugacy class prior distributions on metric-based ranking models, Journal of the Royal Statistical Society Series B, 64 (2002), 433–445.

    Article  MATH  MathSciNet  Google Scholar 

  16. X. Guyon, Random fieids on a network, modelling, statistics and applications, Springer (1995).

    Google Scholar 

  17. F. Hiai and D. Petz, The semicircle law, free random variables and entropy, AMS Mathematical Surveys and Monograph, 77 (2000).

    Google Scholar 

  18. O. Khorunzhiy, W. Kirch and P. Müller, Lifschitz tails for spectra of Erdős-Rényi random graphs, The Annals of Applied Probability, 16 (2006), 295–309.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. F. C. Kingman, Origins of the coalescent: 1974–1982, Genetics, 156 (2000), 1461–1463.

    Google Scholar 

  20. W. König, Orthogonal polynomial ensembles in probability theory, Probability Survey, 2 (2005), 385–447.

    Article  Google Scholar 

  21. L. Lovász and B. Szegedy, Szemeréd’s regularity lemma for the analyst, manuscript (2006).

    Google Scholar 

  22. C. L. Mallows, Non null ranking models I. Biometrika, 44 (1957), 114–130.

    MATH  MathSciNet  Google Scholar 

  23. B. D. McKay, The expected eigenvalue distribution of a large regular graph, Linear Algebra and its Applications, 40 (1981), 203–216.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. J. McLachlan and T. Krishnan, The EM algorithm and extensions, John Wiley &Sons (New York, 1997).

    MATH  Google Scholar 

  25. M. L. Mehta, Random matrices, 3rd edn, New York Cademic Press (2004).

    MATH  Google Scholar 

  26. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equations of state calculations by fast computing machines, Journal of Chemical Physics, 21 (1953), 1087–1092.

    Article  Google Scholar 

  27. T. Nepusz, L. Négyessy, G. Tusnády and F. Bazsó, Predicting key areas and uncharted connections in the cerebral cortex using Szemerédi’s regularity lemma, manuscript (2006).

    Google Scholar 

  28. R. L. Plackett, The analysis of permutations, Appl. Statist, 24 (1975), 193–202.

    Article  MathSciNet  Google Scholar 

  29. L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, 77 (1989), 257–286.

    Article  Google Scholar 

  30. L. Rejtő and G. Tusnády, Clustering methods in microarrays, Periodica Mathematica Hungarica, 50 (2005), 199–221.

    Article  MathSciNet  Google Scholar 

  31. L. Rejtő and G. Tusnády, Reconstruction of Kauffman networks applying trees, Linear Algebra and Application, 417 (2006), 220–244.

    Article  Google Scholar 

  32. C. G. Small, Multidimensional medians arising from geodesics on graphs, Annals of Statistics, 25 (1997), 478–494.

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Sten, Models for distributions on permutations, Journal of the American Statistical Association, 85 (1990), 558–564.

    Article  Google Scholar 

  34. E. Szemerédi, Regular partitions of graphs, Colloquies Internationale C.N.R.S., 260, Proalèkes Combinatorics et Théories des Graphes, Oracy (1976), pp. 399–401.

    Google Scholar 

  35. A. D. Szlam, M. Maggioni, R. R. Coifman and J. C. Bremer, Jr.: Diffusion-driven multiscale analysis on manifolds and graphs: top-down and bottom-up constructions, SPIE Wavelets XI, 5914 (2005).

    Google Scholar 

  36. G. M. Tallis and B. R. Dansie, An alternative approach to the analysis of permutations, Appl Statist, 32 (1983), 110–114.

    Article  MATH  Google Scholar 

  37. T. Tao, Szemerédi’s regularity lemma revisited, arXiv:math.CO/0504472v2 16Nov2005.

    Google Scholar 

  38. L. L. Thurstone, A law for comparative judgement, Psychological Review, 34 (1927), 278–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Csiszár, V., Rejtő, L., Tusnády, G. (2008). Statistical Inference on Random Structures. In: Győri, E., Katona, G.O.H., Lovász, L., Sági, G. (eds) Horizons of Combinatorics. Bolyai Society Mathematical Studies, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77200-2_2

Download citation

Publish with us

Policies and ethics