# The Random Walk Method for Intersecting Families

• Norihide Tokushige
Chapter
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 17)

## Abstract

Let m(n, k, r, t) be the maximum size of satisfying |F 1 ∩ ... ∩ F r| ≥t for all F 1,...,F r ∈ ℱ. We report some known results about m(n,k,r,t). The random walk method introduced by Frankl is a strong tool to investigate m(n, k, r, t). Using a concrete example, we explain the method and how to use it.

## Keywords

Intersection Theorem Random Walk Method BOLYAI Society Mathematical BOLYAI Society Intersecting Family
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [1]
R. Ahlswede and L. H. Khachatrian, The complete nontrivial-intersection theorem for systems of finite sets, J. Combin. Theory (A), 76 (1996), 121–138.
2. [2]
R. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin., 18 (1997), 125–136.
3. [3]
R. Ahlswede and L. H. Khachatrian, The diametric theorem in Hamming spaces — Optimal anticodes, Adv. in Appl. Math., 20 (1998), 429–449.
4. [4]
A. Brace and D. E. Daykin, A finite set covering theorem, Bull. Austral. Math. Soc., 5 (1971), 197–202.
5. [5]
C. Bey and K. Engel, Old and new results for the weighted t-intersection problem via AK-methods, Numbers, Information and Complexity, Althofer, Ingo, Eds. et al., Dordrecht, Kluwer Academic Publishers (2000), pp. 45–74.Google Scholar
6. [6]
P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2), 12 (1961), 313–320.
7. [7]
I. Dinur and S. Safra, On the Hardness of Approximating Minimum Vertex-Cover, Annals of Mathematics, 162 (2005), 439–485.
8. [8]
P. Frankl and On Sperner families satisfying an additional condition, J. Combin. Theory (A), 20 (1976), 1–11.
9. [9]
. P. Frankl, Families of finite sets satisfying an intersection condition, Bull. Austral. Math. Soc., 15 (1976), 73–79.
10. [10]
P. Prankl, The Erdős-Ko-Rado theorem is true for n = ckt, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, 365–375, Colloq. Math. Soc. János Bolyai, 18, North-Holland (1978).Google Scholar
11. [11]
P. Frankl, On intersecting families of finite sets, J. Combin. Theory (A), 24 (1978), 141–161.
12. [12]
P. Frankl, The shifting technique in extremal set theory, “Surveys in Combinatorics 1987” (C. Whitehead, Ed. LMS Lecture Note Series 123), 81–110, Cambridge Univ. Press (1987).Google Scholar
13. [13]
P. Frankl, Multiply-intersecting families, J. Combin. Theory (B), 53 (1991), 195–234.
14. [14]
P. Frankl and N. Tokushige, Weighted 3-wise 2-intersecting families, J. Combin. Theory (A), 100 (2002), 94–115.
15. [15]
P. Frankl and N. Tokushige, Weighted multiply intersecting families, Studia Sci. Math. Hungarica, 40 (2003), 287–291.
16. [16]
P. Frankl and N. Tokushige, Random walks and multiply intersecting families, J. Combin. Theory (A), 109 (2005), 121–134.
17. [17]
P. Frankl and N. Tokushige, Weighted non-trivial multiply intersecting families, Combinatorica, 26 (2006), 37–46.
18. [18]
A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford, 18 (1967), 369–384.
19. [19]
G. O. H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hung., 15 (1964), 329–337.
20. [20]
G. O. H. Katona, A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, 1966 (Akadémiai Kiadó, 1968), pp. 187–207.Google Scholar
21. [21]
J. B. Kruskal, The number of simplices in a complex, in: Math. Opt Techniques (Univ. of Calif. Press, 1963), pp. 251–278.Google Scholar
22. [22]
N. Tokushige, A frog’s random jump and the Pólya identity, Ryukyu Math. Journal, 17 (2004), 89–103.
23. [23]
N. Tokushige, Intersecting families — uniform versus weighted, Ryukyu Math. J., 18 (2005), 89–103.
24. [24]
N. Tokushige, Extending the Erdős-Ko-Rado theorem, J. Combin. Designs, 14 (2006), 52–55.
25. [25]
N. Tokushige, The maximum size of 4-wise 2-intersecting and 4-wise 2-union families, European J. of Comb., 27 (2006), 814–825.
26. [26]
N. Tokushige, The maximum size of 3-wise t-intersecting families, European J. Combin, 28 (2007), 152–166.
27. [27]
N. Tokushige, EKR type inequalities for 4-wise intersecting families, J. Combin. Theory (A), 114 (2007), 575–596.
28. [28]
N. Tokushige, Brace-Daykin type inequalities for intersecting families, European J. Combin, 29 (2008), 273–285.
29. [29]
N. Tokushige, Multiply-intersecting families revisited, J. Combin. Theory (B), 97 (2007), 929–948.
30. [30]
R. M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica, 4 (1984), 247–257.