Skip to main content

Dynamic Distance Hereditary Graphs Using Split Decomposition

  • Conference paper
Algorithms and Computation (ISAAC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4835))

Included in the following conference series:

Abstract

The problem of maintaining a representation of a dynamic graph as long as a certain property is satisfied has recently been considered for a number of properties. This paper presents an optimal algorithm for this problem on vertex-dynamic connected distance hereditary graphs: both vertex insertion and deletion have complexity O(d), where d is the degree of the vertex involved in the modification. Our vertex-dynamic algorithm is competitive with the existing linear time recognition algorithms of distance hereditary graphs, and is also simpler. Besides, we get a constant time edge-dynamic recognition algorithm. To achieve this, we revisit the split decomposition by introducing graph-labelled trees. Doing so, we are also able to derive an intersection model for distance hereditary graphs, which answers an open problem.

Research supported by the French ANR project “Graph Decompositions and Algorithms (GRAAL)”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H.-J., Mulder, H.M.: Distance hereditary graphs. J. Combin. Theory Ser. B 41, 182–208 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bretscher, A.: LexBFS based recognition algorithms for cographs and related families. PhD thesis, Dep. of Computer Science, University of Toronto (2005)

    Google Scholar 

  4. Corneil, D., Habib, M., Lanlignel, J.-M., Reed, B., Rotics, U.: Polynomial Time Recognition of Clique-Width ≤ 3 Graphs. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 126–134. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Corneil, D., Perl, Y., Stewart, L.K.: A linear time recognition algorithms for cographs. SIAM J. Comput. 14(4), 926–934 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Corneil, D., Tedder, M.: An optimal, edges-only fully dynamic algorithm for distance-hereditary graphs. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, Springer, Heidelberg (2007)

    Google Scholar 

  7. Crespelle, C., Paul, C.: Fully-dynamic recognition algorithm and certificate for directed cographs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 93–104. Springer, Heidelberg (2004) Discrete Appl. Math. 154(12), 1722–1741 (2006)

    Google Scholar 

  8. Crespelle, C., Paul, C.: Fully dynamic algorithm for recognition and modular decomposition of permutation graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 38–48. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Alg. Disc. Meth. 3, 214–228 (1982)

    MATH  MathSciNet  Google Scholar 

  10. Dahlhaus, E.: Parallel Algorithms for Hierarchical Clustering and Applications to Split Decomposition and Parity Graph Recognition. Journal of Algorithms 36(2), 205–240 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Damiand, G., Habib, M., Paul, C.: A simple paradigm for graph recognition: application to cographs and distance hereditary graphs. Th. Comp. Sci. 263, 99–111 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Algorithms and Theory of Computation Handbook, ch. 8, CRC Press (1999)

    Google Scholar 

  13. Eppstein, D., Goodrich, M.T., Yu Meng, J.: Delta-confluent drawings. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Acad. Sci. Hungar. 18, 25–66 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hammer, P., Maffray, F.: Completely separable graphs. Discrete Appl. Math. 27, 85–99 (1990)

    Article  MathSciNet  Google Scholar 

  16. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Comput. 31(1), 289–305 (2002)

    Article  MathSciNet  Google Scholar 

  17. Hseih, S.-Y., Ho, C.-W., Hsu, T.-S., Ho, M.-T.: Efficient algorithms for the hamiltonian problem on distance hereditary graphs. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 77–86. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Ibarra, L.: Fully dynamic algorithms for chordal graphs. In: Proc. 10th ACM-SIAM Annual Symp. on Disc. Algorithm (SODA), pp. 923–924 (1999)

    Google Scholar 

  19. McKee, T., McMorris, F.R.: Topics in intersection graph theory. SIAM Monographs on Discrete Mathematics and Applications 2 (1999)

    Google Scholar 

  20. Oum, S.I.: Rank-width and vertex-minors. J. Combin. Th. Ser. B 95, 79–100 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and recognition of cographs. Discrete Appl. Math. 136(2-3), 329–340 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Spinrad, J.: List of open problems. www.vuse.vanderbilt.edu/~spin/open.html

  23. Uehara, R., Uno, Y.: Canonical tree representation of distance hereditary graphs and its applications. IEICE Technical Report COMP2005-61 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takeshi Tokuyama

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gioan, E., Paul, C. (2007). Dynamic Distance Hereditary Graphs Using Split Decomposition. In: Tokuyama, T. (eds) Algorithms and Computation. ISAAC 2007. Lecture Notes in Computer Science, vol 4835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77120-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77120-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77118-0

  • Online ISBN: 978-3-540-77120-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics