Skip to main content

On the Self-stabilization of Mobile Robots in Graphs

  • Conference paper
Principles of Distributed Systems (OPODIS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4878))

Included in the following conference series:

Abstract

Self-stabilization is a versatile technique to withstand any transient fault in a distributed system. Mobile robots (or agents) are one of the emerging trends in distributed computing as they mimic autonomous biologic entities. The contribution of this paper is threefold. First, we present a new model for studying mobile entities in networks subject to transient faults. Our model differs from the classical robot model because robots have constraints about the paths they are allowed to follow, and from the classical agent model because the number of agents remains fixed throughout the execution of the protocol. Second, in this model, we study the possibility of designing self-stabilizing algorithms when those algorithms are run by mobile robots (or agents) evolving on a graph. We concentrate on the core building blocks of robot and agents problems: naming and leader election. Not surprisingly, when no constraints are given on the network graph topology and local execution model, both problems are impossible to solve. Finally, using minimal hypothesis with respect to impossibility results, we provide deterministic and probabilistic solutions to both problems, and show equivalence of these problems by an algorithmic reduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. In: Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 1070–1078, New Orleans, LA, USA (January 2004)

    Google Scholar 

  2. Angluin, D.: Local and global properties in networks of processors (extended abstract). In: STOC, pp. 82–93. ACM (1980)

    Google Scholar 

  3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: PODC, pp. 290–299 (2004)

    Google Scholar 

  4. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing 235–253 (March 2006)

    Google Scholar 

  5. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2005)

    Google Scholar 

  6. Beauquier, J., Herault, T., Schiller, E.: Easy Stabilization with an Agent. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 35–51. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Défago, X., Gradinariu, M., Messika, S., Parvédy, P.R.: Fault-tolerant and self-stabilizing mobile robots gathering. In: DISC, pp. 46–60 (2006)

    Google Scholar 

  8. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46(1), 69–96 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: optimal mobile agent protocols. In: PODC, pp. 153–161 (2002)

    Google Scholar 

  10. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Dolev, S., Schiller, E., Welch, J.: Random walk for self-stabilizing group communication in ad-hoc networks.In: Reliable Distributed Systems, 2002. Proceedings. 21st IEEE Symposium on, pp. 70–79 (2002)

    Google Scholar 

  12. Feige, U.: A tight upper bound on the cover time for random walks on graphs. Random Struct. Algorithms 6(1), 51–54 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Distributed coordination of a set of autonomous mobile robots. IVS, 480–485, (2000)

    Google Scholar 

  14. Fomin, F.V., Fraigniaud, P., Nisse, N.: Nondeterministic Graph Searching: From Pathwidth to Treewidth. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 364–375. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Fraigniaud, P., Ilcinkas, D., Rajsbaum, S., Tixeuil, S.: The Reduced Automata Technique for Graph Exploration Space Lower Bounds. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 1–26. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Ghosh, S.: Agents, distributed algorithms, and stabilization. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 242–251. Springer, Heidelberg (2000)

    Google Scholar 

  17. Herman, T., Masuzawa, T.: Self-Stabilizing Agent Traversal. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 152–166. Springer, Heidelberg (2001)

    Google Scholar 

  18. Prencipe, G.: Corda: Distributed coordination of a set of autonomous mobile robots.In: Proc. ERSADS, pp. 185–190, (May 2001)

    Google Scholar 

  19. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots—formation and agreement problems.In: Proceedings of the 3rd International Colloquium on Structural Information and Communication Complexity (SIROCCO 1996), Siena, Italy, (June 1996)

    Google Scholar 

  20. Tetali, P., Winkler, P.: On a random walk problem arising in self-stabilizing token management. In: PODC, pp. 273–280 (1991)

    Google Scholar 

  21. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part i-characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996)

    Article  Google Scholar 

  22. Yamashita, M., Kameda, T.: Computing on Anonymous Networks: Part II-Decision and Membership Problems. IEEE Trans. Parallel Distrib. Syst. 7(1), 90–96 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Tovar Philippas Tsigas Hacène Fouchal

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blin, L., Gradinariu Potop-Butucaru, M., Tixeuil, S. (2007). On the Self-stabilization of Mobile Robots in Graphs. In: Tovar, E., Tsigas, P., Fouchal, H. (eds) Principles of Distributed Systems. OPODIS 2007. Lecture Notes in Computer Science, vol 4878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77096-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77096-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77095-4

  • Online ISBN: 978-3-540-77096-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics